

Acid Rock Drainage Management Plan Kinnears Quarry

Version 2 July 2011

TWEED SHIRE COUNCIL | TOGETHER FORWARD

THIS PAGE IS BLANK

Table of Contents

1.0	Introducti	ion	1
2.0	Backgrou	nd	1
2.1	Acid Ro	ck Drainage (ARD) Investigation	1
2.2	Ground	water Investigation	2
2.3	Acid Ro	ck Drainage Management Plan	2
3.0	Catchmer	nt Analysis1	2
3.1	Diversio	on of uncontaminated runoff 1	12
3.2	Diversio	on of Flows from Borehole BH4 1	12
3.3	Sizing o	f water treatment pond, (WTP) 1	12
3.4	Lining o	f Water Treatment/Holding Ponds 1	12
4.0	Water Tre	atment 1	13
4.1	Treatme	ent Regime 1	13
4.2	Material	s and Dosage Rate 1	13
4.3	Equipme	ent 1	13
4.4	Storage	of Materials 1	14
4.5	Stabilisa	ation and Release of Treated Water 1	14
4.6	Nominat	ted Discharge Point 1	14
4.7	Testing	1	14
4.	7.1 During	Dosing Process 1	14
4.	7.2 After D	osing1	14
4.	7.3 During	Stabilisation 1	14
4.8	Sludge I	Handling1	15
5.0	Water Qua	ality Monitoring 1	6
5.1	Historica	al Records 1	16
5.2	Future S	Sampling and Testing 1	16
6.0	Quarry Re	ehabilitation 1	6
6.1	Existing	Site Conditions 1	6
6.2	Landfor	ming 1	17
6.3	Reveget	tation1	17
7.0	Reference	əs1	8
8.0	Appendic	es 1	9
Арр	endix A	1 st Prevention Notice	20
Арр	endix B	2 nd Prevention Notice	21
Арр	endix C	Final Prevention Notice	22

Table of Contents

9.0 List	of Tables	
Table 1	test results 2011	25
Table 2	test results 2010	26
Table 3	test results 2009	27
Table 4	test results 2008	28
Table 5	test results 2007	29
Table 6	test results 2006	30
Table 7	Flora recorded at Kinnears Quarry during TSC field surveys	31
Table 8	Additional species suitable for rehabilitation	35

1.0 Introduction

Tweed Shire Council (TSC) owns a quarry site (Kinnears Quarry) located on Harry's Road off Numinbah Road at North Arm, approximately 6km west of Murwillumbah. Development of the quarry has resulted in acid rock drainage (ARD) from water flowing from the site into an adjacent creek.

Council has commissioned two reports to assess the causes and extent of the ARD, and recommending remedial treatment options:

Report on Acid Rock Drainage (ARD) Investigations and Remedial Solutions – ECOROC Pty Ltd

Kinnears Quarry Acid Rock Drainage – Groundwater Assessment – Australasian Groundwater & Environmental Consultants Pty Ltd

In February 2011 the Department of Environment and Climate Change and Water (DECCW) issued a Prevention Notice to TSC requiring Council to develop an ARD Management Plan (ARDMP) for Kinnears Quarry. This document is presented in response to that Prevention Notice.

2.0 Background

Kinnears Quarry is one of three (3) adjacent hard rock quarries (the other two being Singh's and Sandercock's) established in the western flank of a steep, heavily wooded ridge, formed in deeply incised terrain of hard, resistant rocks of the Neranleigh Fernvale Beds. The quarries are located at Harrys Road, off the North-Arm Numinbah Road, approximately 6km west of Murwillumbah. See Figures 1 and 2 for location details.

Aerial photography shows that Kinners Quarry was operational pre- 1970. See Figure 3. Tweed Shire Council (TSC) purchased the land (now Lot 1 DP 1004207) that contains Kinnears Quarry in 1991 and continued extraction until 2006.

Kinnears quarry has been worked as a typical hillside quarry commencing from Harry's Road (~RL 24m AHD) and gradually working back (east) into the slope and upwards with a series of four (4) faces and benches. See Figure 4. Within benches (and faces) 2 and 3, a narrow 5-8m wide bed or lens of naturally occurring pyrite-rich, graphitic shale is exposed and is generating low pH surface and groundwater. For a cross section of the quarry refer to Figure 5. During and after rainfall events, the impacted acid rock drainage (ARD) from the site eventually flows into the adjacent unnamed creek located along the site's western boundary (hereafter referred to as Site Creek).

2.1 Acid Rock Drainage (ARD) Investigation

In March 2009 the Department of Environment and Climate Change (DECC) issued a Prevention Notice to TSC requiring investigation of the ARD (Appendix A).

In response to this Prevention Notice TSC engaged Ecoroc Pty Ltd (Ecoroc) to undertake an initial appraisal of the likely cause of the ARD condition and provide advice on what investigations and remedial treatment options are available to address the problem at the site. Their report was presented in July 2009 –

Report on Acid Rock Drainage (ARD) Investigations and Remedial Solutions – ECOROC Pty Ltd July 2009.

Appendix 1 of the Ecoroc report contains a Geological Assessment and Quarry Development Report prepared by Geobas Consulting Pty Ltd that provides a detailed description of the site geology.

2.2 Groundwater Investigation

In September 2009 the Department of Environment and Climate Change and Water (DECCW) issued a Prevention Notice to TSC requiring the construction of some of the ARD controls recommended in the Ecoroc report, and the investigation of groundwater at the site (Appendix B).

In response to this Prevention Notice TSC engaged Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) to undertake a hydrogeological investigation of the groundwater regime within the site including installation of a groundwater borehole network and monitoring of groundwater chemistry. AGE presented their report in October 2010 -

Kinnears Quarry Acid Rock Drainage – Groundwater Assessment – Australasian Groundwater & Environmental Consultants Pty Ltd – October 2010

2.3 Acid Rock Drainage Management Plan

In February 2011 the Department of Environment, Climate Change and Water (DECCW) issued a Prevention Notice to TSC requiring Council to develop an Acid Rock Drainage (ARD) Management Plan for Kinnear's Quarry (Appendix C).

This document is presented in response to that Prevention Notice.

In summary, the ARD contaminated water produced at the site will be contained and collected in ponds. The collected ARD water will be neutralised by treatment with hydrated lime. After the treated water has stabilised chemically and the solids produced have settled, the treated water will be tested to ensure compliance with licence conditions before discharge into Site Creek or used for site irrigation for revegetation. The accumulated solids will be dried on site before transport to landfill disposal.

The areas of the site not occupied by water treatment and access facilities will be rehabilitated by revegetation.

DRAFT Acid Rock Drainage Management Plan

KINNEARS QUARRY ACID ROCK DRAINAGE REMEDIATION

INDEX

DESCRIPTION	SHEET	ISSUE
INDEX & LOCALITY SKETCH		
OVERALL SITE PLAN & EXISTING STORAGE POND VOLUMES	2	D
PROPOSED WORKS PLAN	1	
PROPOSED WORKS TYPICAL SECTIONS	4	A
		2 E

ŀ		
	PROJECT CLIENT	CESIGN NAME OF
	ATT.	DATE

DESIGNED BY: W.Boyd / I.Kite DRAWINGS BY: M.Cullen SURVEY BY: T.S.C. DATE: June 2011

WK09031/01

FIGURE 6 – DRAWING 2

OVERALL SITE PLAN

 a contrast latera b contrast latera b contrast latera 		06241 8 55%	\$	SHIRE COUNCIL	DESIGN UNIT	Desides prysical Jank Prysical prysical Jank Vertex prysical Jank Jank Jank	PROJECT: PLANTINE	KINNEARS QUARRY ACID ROCK DRAINAGE REMEDIATION OVERALL SITE PLAN & EXISTING STORAGE POND VOLUMES	WK09031/02 biezer 2 of 4 biezers
shanda Shanda ala sha	10 a	w.h.	- 10 h-	38 J=-			AGAD PLE No	38	

(1	1	
1	0.	e/	

= 0.94ha

+ 0.68ha

(Empty)

IStarting

1.3

FIGURE 6 - DRAWING 3

2		104E	10					PROPOS	ED WOR	RKS	PL	AN				
					-	THEFT	DES	IGN UNIT	Constant of the					-	PROJECT:	KINNEARS QUA
			34				States and a second second	NEAR NEW CORE.		100.0	10.000	COLUMN T	-			ACID ROCK DRAINAGE P
							Concession in the local division of the loca	In the second	1000	10	in the second	and the second			PLAN TITLE:	DEADAGED WA
1.0	INSPESSION INCOME.			00.001	No. PY	CLIDE CYB MCI	1988	BU BRIDDENIE	100 M 100 M 100	in the	and a	A SUBJECTION	10.00	14		PROPOSED WC
	CONTRACTOR OF THE OWNER.		and the second	MARK .		CALIFIC CALIFORNIA		www.tenad.com.gov.au	THE DEAL OF	1141	-	1.20	0		10	PLAN
the m	- al- al- al- al-	(m) [and the local sector	- h										ACAD PLUE IN	(34)

FIGURE 6 - DRAWING 4

3.0 Catchment Analysis

3.1 Diversion of uncontaminated runoff

The diversion of uncontaminated stormwater runoff around the existing sediment ponds was a condition of the Prevention Notice dated 29 September 2009. This work was completed by December 2009. Monitoring and observation during severe rainfall events has confirmed that these diversion works are functioning as intended. The catchment boundaries created by the diversions are shown on Figure 6 – Drawing 2 - No. WK09031/02.

The catchment and runoff calculations for the sizing of the contaminated water treatment/holding ponds for this ARD Management Plan have been based on this landform.

3.2 Diversion of Flows from Borehole BH4

As part of the groundwater study conducted by AGE, four boreholes were drilled to allow sampling of groundwater. (See Figure 2 for location)

It was found that the water table in borehole BH4 was above ground level, with the level dependent on recent rainfall history. As part of the ARD management for the site, borehole BH4 will be piped to discharge into the water treatment ponds.

3.3 Sizing of water treatment pond, (WTP)

As per the requirements of the Prevention Notice dated 24 February 2011 clause 1(a) it water treatment/holding ponds have been designed to capture 85mm of rain with an allowance for seepage and inflow from monitoring bore MB4. The details of the catchment calculations are shown on Figure 6- Drawing 2 - No. WK09031/02.

Volume of collected water from 85mm rain event	520 m ³
Volume of Pond 1	1,694 m ³
Freeboard, seepage and sludge storage	1,174 m ³
Volume of Pond 2	896 m ³

When rain events in excess of the design intensity/duration (85mm over 5 days) occur the excess water will initially be stored in Pond 1 using the available freeboard capacity. When this freeboard capacity is exceeded the water will overtop the spillway into Pond 2. The available storage in Pond 2 will depend on the current treatment cycle (refer to 4.1 below for details). When the available capacity in Pond 2 is consumed by the inflowing stormwater it will overflow via the existing culvert under Harrys Road into Site Creek at the nominated discharge point. The process of successive overflows through Pond 1 and Pond 2 provides the greatest opportunity for initially storage of flows and then dilution of contaminated water before it is released into the Creek. Any water retained in both Pond 1 and Pond 2 after such an event will be tested and treated as per Section 4 below.

3.4 Lining of Water Treatment/Holding Ponds

The water treatment/holding Ponds 1 and 2 will be excavated to a hard base free of loose material and then lined with high durability reinforced shotcrete. The area of Pond 2 that is below the finished surface level (refer Figure 6 - Drawing 4 - No. WK09031/04) will be filled with compacted material prior to shotcrete surfacing.

4.0 Water Treatment

4.1 Treatment Regime

The collected contaminated water will be batch treated. After each rainfall event or when the water in Pond 1 has reached its design level (excluding freeboard allowance) the water will be chemically dosed in accordance with the dosage calculations for the water volume and pH (see 4.2 below). After allowing time for floc formation, sludge settlement and confirmation pH testing the water will be transferred to Pond 2 by pump, leaving Pond 1 ready to receive fresh inflow.

The treated water stored in Pond 2 will be regularly tested after transfer. When the water quality has stabilised and meets the release criteria it will be either used for irrigation of the revegetation plantings or pumped into Site Creek at the nominated discharge point.

4.2 Materials and Dosage Rate

Hydrated lime will be used as the neutralising agent.

The dosage rate to bring 100m³ of contaminated water from the existing pH to pH7 is given in the following table.

Existing pH	Kg of Hydrated Lime per 100m ³ of Water
1.0	370
1.5	120
2.0	37
2.5	12
3.0	4
3.5	1.2
4.0	0.4
4.5	0.1
5.0	0.04
5.5	0.01
6.0	0.004
6.5	0.001

After the Ponds 1 and 2 have been constructed the water volume for various water depths will be calculated and a new table prepared giving the dosage for each pond for the various water levels. This will minimise the risk of miscalculation of dosage.

4.3 Equipment

The treatment of the contaminated water will be performed using a trailer mounted portable dosing plant. The plant consists of a 1,000 litre chemical mixing tank, chemical mixing/recirculating pump, and a pond water pump with a venturi orifice in the pressure outlet hose. The pumps are powered by integral petrol motors.

The dosing process involves filling the chemical mixing tank with water, starting the chemical mixing/recirculating pump, then gradually adding the calculated quantity of chemical to the tank. When the chemical is sufficiently dissolved the pond water pump is connected to the intake from the pond and started. The water is drawn from the pond and sprayed back onto the surface of the pond to provide aeration and increase the dissolved oxygen as an aid to flocculation. As the water is sprayed back into the pond the mixed chemical is gradually introduced via the venturi orifice. The process is continued until the mixed chemical is all dispersed into the pond water.

4.4 Storage of Materials

All materials (chemical, fuel) required for the treatment process are brought to the site on the day of treatment in a utility vehicle. There is no storage of materials on site.

4.5 Stabilisation and Release of Treated Water

Industry experience has indicated that it is possible for neutralised acid drainage water to have secondary chemical reactions after the initial neutralisation treatment. These secondary reactions can result in the treated water quality falling outside of discharge criteria after a short period. To allow for these secondary reactions and allow time to undertake any additional treatment that becomes necessary, the treated water from Pond 1 will be transferred and held in Pond 2 until the reactions have stabilised. When the discharge water quality criteria set down in the Prevention Notice have been met the treated water will be either used for irrigation of the revegetation plantings or discharged by pumping into Site Creek at the nominated discharge point.

4.6 Nominated Discharge Point

The Nominated Discharge Point from Pond 2 into Site Creek is the outlet from the existing culvert under Harry's Road. Its coordinates are:

- 532920 E (MGA)
- 6867080 N

At the outlet of the culvert an energy dissipater and scour protection will be constructed to prevent erosion of the creek bank.

4.7 Testing

4.7.1 During Dosing Process

Prior to dosing of the pond water its pH will be measured with a hand held multiprobe meter. The pH value obtained will be an input into the dosage calculation.

At regular intervals during the dosing process the pH will be measured to monitor the effectiveness of the treatment. The dosage will be adjusted during the final stages to achieve a pH towards the top of the desired pH range of the treated water (6.0 - 8.0).

4.7.2 After Dosing

The pH of the treated pond will be measured by hand held multiprobe meter daily after treatment. The water will also be tested for clarity to indicate the degree of flocculation and settlement. When the treated water has stabilised and settled it will be pumped from the upper surface of Pond 1 into Pond 2.

4.7.3 During Stabilisation

After discharge into Pond 2 the water will be tested daily by hand held multiprobe meter until its pH, dissolved oxygen, and clarity has stabilised. At that time a sample will be taken to

the Tweed Laboratories for testing to confirm it meets the quality criteria set down in the Prevention Notice before discharge via irrigation of the revegetation plantings or pumping into Site Creek at the nominated discharge point.

4.8 Sludge Handling

The neutralisation of the contaminated water will cause the precipitation of metal hydroxides, which will form in the water as floc before settling out. These reactions are described by Skousen, Hilton and Faulkner¹

Metal Precipitation and pH

Enough alkalinity must be added to raise water pH and supply hydroxides (OH-) so dissolved metals in the water will form insoluble metal hydroxides and settle out of the water. The pH required to precipitate most metals from water ranges from pH 6 to 9 (except ferric iron which precipitates at about pH 3.5). The types and amounts of metals in the water therefore heavily influence the selection of an AMD treatment system. Ferrous iron converts to a solid bluish-green ferrous hydroxide at pH >8.5. In the presence of oxygen, ferrous iron oxidizes to ferric iron, and ferric hydroxide forms a yellowish-orange solid (commonly called yellow boy), which precipitates at pH >3.5. In oxygen-poor AMD where iron is primarily in the ferrous form, enough alkalinity must be added to raise the solution pH to 8.5 before ferrous hydroxide precipitates. A more efficient way of treating high ferrous AMD is to first aerate the water (also outgassing CO₂), causing the iron to convert from ferrous to ferric, and then adding a neutralizing chemical to raise the pH to 6 or 7 to form ferric hydroxide. Aeration after chemical addition is also beneficial. Aeration before and after treatment usually reduces the amount of neutralizing reagent necessary to precipitate iron from AMD. Aluminum (AI) hydroxide generally precipitates at pH > 5.0 but also enters solution again at a pH of 9.0. Manganese precipitation is variable due to its many oxidation states, but will generally precipitate at a pH of 9.0 to 9.5.

Oxidants

Aeration is the process of introducing air into water. Oxidation occurs when oxygen in air combines with metals in the water. If the water is oxidized, metals generally will precipitate at lower pH values. For this reason, aeration of water can be a limiting factor in many water treatment systems. If aeration and oxidation were incorporated or improved in the treatment system, chemical treatment efficiency would increase and costs could be reduced.

As noted in 4.3 above, the dosing treatment provides for the aeration of the water to aid the precipitation process. If weather conditions permit, the treated water will be held in Pond 1 long enough for the majority of the floc to settle (1 - 2 days) before being discharged to Pond 2. Additional floc settlement is expected to occur in Pond 2.

When the accumulation of settled floc in the ponds reaches the holding volume it will be pumped to the sludge drying bed. Drainage water from the drying bed is returned by gravity to either Pond 1 or Pond 2. When the sludge has dried sufficiently to allow handling as a solid it will be classified in accordance with the Waste Classification Guidelines (DECCW 2009) and if fit for landfill disposal it will be excavated and transported to Council's Stotts Island Landfill.

¹ Overview of Acid Mine Drainage Treatment with Chemicals

West Virginian University Extension Service

5.0 Water Quality Monitoring

5.1 Historical Records

Council has conducted water quality testing at the site for many years. This testing was conducted under various regimes

Groundwater Borehole Monitoring

The groundwater was sampled at four boreholes as shown on Figure 2 each month from February to August 2010. On the same days as the groundwater was sampled, surface water samples were taken at Kin 1 - 4. Refer to AGE report for details and results.

Surface Water Monitoring

The surface water has been sampled and tested at various locations for many years. Sampling was carried out monthly and after each significant rainfall event. The tabulated results of these tests from 2006 are shown in Tables 1-6.

5.2 Future Sampling and Testing

Clause 1(c) of the Prevention Notice requires the implementation of an ongoing water quality testing program for discharge water and Site Creek water upstream and downstream of Kinnears Quarry. This condition will be satisfied by continuing the existing testing program at locations KIN 1 – 5, with Pond 1 being KIN 4 and Pond 2 being KIN 5. This will provide continuity of test results and allow assessment of the effectiveness of the ARD treatment on improving stream water quality.

6.0 Quarry Rehabilitation

6.1 Existing Site Conditions

Kinnears Quarry has been worked as a typical hillside quarry commencing from Harrys Road and gradually working east into the hillside with a series of four faces and benches. Bench 1 and Harrys Road are at RL 24m AHD, bench 4 is at RL 58m AHD, with the top of face 4 at RL 68m AHD.

The quarry has been in its current landform since 2007. In December 2009 some minor work was carried out to divert uncontaminated runoff around the area of pyritic rock, and to create bund walls of cementitious waste in areas of ARD.

There exists a stockpile of topsoil in the centre rear of bench 2, a stockpile of mulch at the northern rear of bench 2, and a stockpile of coarse aggregate at the southern rear of bench 2. These three stockpiles comprise the majority of loose materials on the site. Apart from these loose materials the site is comprised predominantly of exposed bedrock with some covering of weathered gravel and/or soil. Examination of the test results for suspended solids for the existing sediment ponds and in Site Creek downstream of the quarry indicate that the quantity of sediment entering the Creek from the quarry is minimal.

There is a scattering of regrowth Eucalypt and other native species along bench 4. The undisturbed area beyond face 4 contains natural forest. At the southern end of the quarry adjacent to benches 1, 2 and 3 there is a vigorous growth of weed and grass.

Bench 2 of the quarry also acts as part of the access to the adjacent Singhs Quarry. This right of access is granted in the lease agreement between Council and the owner of Singhs Quarry and will be retained.

6.2 Landforming

This ARD Management Plan requires the existing small secondary sediment pond to be added to the area of the existing primary sediment pond by undertaking minor earthworks. The dam wall that forms the ponds will be realigned and raised to increase the pond capacity. A separating wall will be installed across the formed pond to create Pond 1 and Pond 2 required for the ARD treatment process.

An above-ground sludge drying bed will be constructed on bench 2. See Figure 6 – Drawing 3 - No. WK09031/03.

Any minor amounts of processed rock lying in the quarry will be collected and used in the landforming works. The existing stockpile of coarse aggregate will be used in the formation of the sludge drying bed and for filter beds within the site. The existing stockpiles of topsoil and mulch will be used for revegetation works on the site.

These are the only proposed changes to the existing landform.

6.3 Revegetation

Bench 1 will consist of Ponds 1 and 2, and access roads for conducting water treatment and handling processes.

The residual areas of bench 2 not occupied by access roads and water treatment features and bench 3 will be covered with topsoil and mulched to deter weed growth. The topsoil and mulch will come from on-site stockpiles and additional imported material. These areas will be planted with native species. Refer to tables 7 and 8 for the list of species. The proposed species include taller trees that will eventually provide visual screening for the quarry faces.

Bench 4 is not safely accessible. Given the existing native regrowth on this bench no further revegetation is proposed.

7.0 References

Skousen, J; Hilton, T; Faulkner, B; (circa 2000), *Overview of Acid Mine Drainage Treatment with Chemicals*, West Virginia University Extension Service - Agriculture and Natural Resources - Land Reclamation www.wvu.edu/~agexten/landrec/land.htm

8.0 Appendices

Appendix A 1st Prevention Notice

DIRECTION TO TAKE PREVENTIVE ACTION

1. The Department of Environment & Climate Change (DECC) directs TWEED SHIRE COUNCIL to take the following action:

Council is to engage an appropriately qualified consultant to assess the following:

- Investigate the likely causes of acid generation and the total acid generating potential of the entire quarry site and immediate surrounding area; and
- A review of immediate and long term options available for treatment of acidified stormwater and groundwater discharged from Kinnear's Quarry and the immediate surrounding area;
- Long term options for the treatment and management of the source of acid generation in the quarry.
- 2. Council is to provide DECC with a consultants report addressing the above points by 31 July 2009.

Appendix B 2nd Prevention Notice

DIRECTION TO TAKE PREVENTIVE ACTION

Department of Environment, Climate Change and Water (DECCW) directs TWEED SHIRE COUNCIL to:

1. Undertake the following action as outlined in the 'Report on Acid Rock Drainage (ARD) Investigations and Remedial Solutions' (Ecoroc Pty Ltd July 2009):

 a) Re-profile diversion drains to minimise the flow of uncontaminated surface water into the existing sediment ponds. During re-profiling any obvious Potentially Acid Forming (PAF) rock scattered by the workings should be removed.
 In re-profiling diversion drains, Council must ensure that the diverted uncontaminated surface water runoff receives adequate treatment to minimise sediment runoff from the quarry.

b) Application of cemetitous material or lime to the base around the PAF rock face exposures at faces 2 and 3. This material should also be placed to form a low bund wall around known ARD seepage points and sediment dams.

Actions 1(a) and 1(b) are to be implemented by 30 November 2009.

- c) Conduct monthly surface water quality monitoring from the following locations:
 - i) Kinnear Quarry sediment pond;
 - ii) Creek upstream from Sandercock quarry (in paddock);
 - iii) Creek at boundary of Sandercock Quarry and Kinnear Quarry;
 - iv) Downstream in creek at culvert on Harry's Road.

Water quality monitoring must involve the collection of in-situ data including pH, EC and Dissolved Oxygen. Samples must also be collected for the full suite of dissolved and total metals analysis.

Action 1 (c) is to commence as of 5 October 2009.

2. Council must engage a groundwater specialist to conduct an investigation into the influence of groundwater on the generation of acid and metalliferous discharge from Kinnear's Quarry to the adjacent unnamed creek.

A groundwater investigation proposal must be provided to DECCW by 6 November 2009. This proposal should include as a minimum:

- i) The utilisation of at least 3 groundwater wells to determine groundwater flow rate and flow direction.
- ii) Monthly monitoring of groundwater including pH, EG, Dissolved Oxygen, total and dissolved metals.
- iii) Reference to surface water quality monitoring data obtained from action 1(c) above.
- iv) Assessment of the relative contributions of ground and surface waters to acid and metalliferous drainage from the premises.

Subject to DECCW approval, the groundwater investigation proposal must commence by 30 November 2009, and an interim report to be provided by 31 July 2010. Further monitoring requirements will be subject to the interim report findings.

Appendix C Final Prevention Notice

DIRECTION TO TAKE PREVENTIVE ACTION

To prevent the ongoing pollution of the creek, The Department of Environment, Climate Change and Water (DECCW) directs TWEED SHIRE COUNCIL to take the following action:

- 1. Develop an Acid Rock Drainage (ARD) Management Plan for Kinnear's Quarry that includes, but is not limited to:
 - a. The upgrade of the quarry's sediment basins (primary and secondary). The basin/s must:
 - i. Have the capacity to capture without discharge all ARD contaminated surface water (including groundwater seepage within the quarry) arising from rainfall of up to 85mm in total falling over a period of up to 5 consecutive days.
 - ii. Include lining the basin/s floor and walls with a suitable impermeable barrier;
 - Have the capacity to accommodate temporary storage of sludge generated by the ARD treatment process/regime, in addition to the storage volume required under point (i) above;
 - iv. A designated discharge point, including coordinates;
 - b. A regime for the treatment of contaminated water that involves:
 - i. Description of materials/chemicals to be used for treatment process;
 - ii. The means by which treatment will take place (equipment/machinery required);
 - iii. The proposed frequency of treatment of contaminated water to meet the following criteria prior to discharge:
 - pH: 6 8
 - Dissolved Oxygen: >5 mg/L
 - Total Suspended Solids (TSS): <20 mg/L
 - iv. Ensuring that treated water meeting the discharge criteria outlined above is stable prior to discharge.
 - v. The separation and diversion of all uncontaminated runoff generated on site.
 - c. A surface water quality monitoring regime that includes:
 - i. Monthly monitoring of treated discharges for the following parameters:

pH Conductivity Dissolved Oxygen (mg/L) TSS (mg/L) Aluminium (mg/L) Calcium (mg/L) Iron(mg/L) Magnesium (mg/L) Manganese (mg/L) Sodium (mg/L) Sulphur (mg/L)

ii. Monthly monitoring of The Creek upstream and downstream of Kinnear's Quarry for the parameters outlined in (i) above;

- d. The diversion of artesian groundwater flows from Monitoring Bore 4 (MB4) to the upgraded sediment basin for treatment prior to discharge.
- e. Detail how contaminated sludge generated from the ARD treatment process will be lawfully managed.
- f. The rehabilitation of all remaining exposed quarry floor surfaces outside the footprint of the upgraded sediment basin catchment.
- g. An outline how any fuel and/or chemicals to be used in the ARD treatment process will be stored and managed to eliminate any risk of pollution.
- 2. The ARD Management Plan for Kinnear's Quarry must be submitted to DECCW by 31 May 2011.
- 3. Subject to approval by the Department, the ARD Management Plan for Kinnear's Quarry must be implemented by 31 August 2011.
- 4. Council is to submit an application for an Environment Protection Licence to the Department prior to the commencement of any treatment and discharge regime.

9.0 List of Tables

- Table 1 Test Results 2011
- Table 2: Test Results 2010
- Table 3: Test Results 2009
- Table 4: Test Results 2008
- Table 5: Test Results 2007
- Table 6: Test Results 2006
- Table 7: Flora Recorded at Kinnears Quarry
- Table 8: Additional Species Suitable for Rehabilitation

1 Tal	ble 2																		
2 Kin	nears Di	Jarru ar	d Env	virons - V	Vater (Jualitu	Tes	Besults								2011			
2 KII		Jany a			тацет с	auanty	163									2011			
3								<u>Date Sameled</u> Rainfall Date	Provinue day	Typical Value	1870572011	05/05/2011	05/05/2011	07/04/2011	04/04/2011	07/03/2011	01/03/2011	08/02/2011	11/01/2011
5									Provinar acek		ő	43	43	40	84.5	17	19	11	128
5									Weather	Dec est No.	overcart	overcart	avercart 144205	overcart	Fine & Hot	tine	Finefshouers	tine % hot	rain
8 KIN	1 Unctra	an Sanda	kr	ausers (Cea	ak in Da	ddaeb				Report No.	111447-C	111304	111305						
	i opstre	an Sanu	FICUCES	Hu. of	CE III Fa	laavesj													
9	Tast		Unitr	samples	Hees	4. Døv.	High	Lau											
10																			
11	PH			23	6.0	0.8	8.8	5.2		6.1	5.4	5.8	5.8	6.6	5.4	6.1	5.9	6.3	6.2
12	Conduct	tivity @ 251	C	23	118	25	155	44		125.0	118.0	91.0	91.0	129.0	113.0	122.0	125.0	104.0	112.0
10	Chlorida	dea Solias		12	10	20	30			15.7	22.0	3.3			0.0		30.0		
15	Sulphur	as Sulobat	0	23	7.3	44	23.0	43		77	20.0	3.6	3.6	4.3	4.5	51	51	41	4.5
16	Iron(Tot	ചാവവുന്നു. മി	-	23	0.3	0.2	0.9	0.0		0.3	3.5	0.4	0.4	0.3	0.4	0.2	11	0.4	0.6
17	Oil and (ay Grease								0.0	2.0	6.0		0.0	2.0	0.2	2.0	0.4	
18																			
19																			
20 KIN	2 Upstre	an Kinne	ars at O	utlet Pipe	from Sar	ndercoc	ks (Cre	ek in Sandero	ock Quarry)										
21	Teret		II. it.	Ha. af		4	MI - 4												
22	1476		UNIC	approx				LEU											
23	ьH			19	4.5	1.3	7.3	3.1		4.3	5.0	5.6	5.6	5.3	5.2	5.6	5.3	5.8	5.6
24	Conduct	tivity @ 25	c	19	271	124	548	87		255.1	154.0	160.0	91.0	175.0	145.0	163.0	160.0	122.0	144.0
25	Suspend	ded Soilds		10	272	665	2,155	1 6			110.0	49.0			15.0		12.0		
26	Chloride	•		10	12.4	4.2	18.0	3.6		14.2	18.0	15.0			15.0		16.0		
27	Sulphur	as Sulphat	e	19	73	38	152	F 15		82.1	26.0	23.0	24.0	23.0	22.0	21.0	25.0	13.0	20.0
28	lron (Tot	ත)		19	9.1	6.3	22.0	0.4		8.5	11.0	4.9	5.5	3.0	3.0	2.4	2.3	2.1	1.5
29	Oil and (Grease									2.0	2.0			2.0		2.0		
30																			
31																			
32 KIN	3 Upstre	am of Bri	dge o re i	r Harry's Rd	near er	itrance	(Large	sedimentatio	n Pondj										
33	Test		Unite	remples	Heas	4. Dev.	High	Leu											
34																			
35	PH			29	3.6	0.9	6.6	2.5		3.5	4.2	4.6	2.7	2.7	4.1	2.6	3.2	2.6	2.5
36	Conduct	tivity @ 25 I	ç	29	453	277	1,761	77		487.3	241.0	254.0	1,542.0	1,678.0	230.0	2,220.0	471.0	2,134.0	1,754.0
37	Suspend	ded Soilds		12	27	71	253	1			14.0	8.0			9.1		3.6		
38	Chloride	·		18	13.9	3.7	21.0	5.6		13.1	19.0	16.0			15.0		15.0		
39	Sulphur	as Sulphat	e	23	131	113	682	6		199.8	70.0	47.0	509.0	544.0	64.0	514.0	1.2	812.0	735.0
40	Iron [1 ot	aij Dece e c		23	2.5	2.5	14.0	0.3		4.6	4.7	3.6	32.0	45.0	3.4	30.0	1.8	50.0	30.0
41	Uli and (arease									2.0	2.0			3.0		2.0		
42																			
44 KIN	4 Primar	sediner	at nond i	Greek at H	arra's Re	ha													
		,		Ha. af	,	,													
45	Test		Unitr	rempler	Hees	d. Døv.	High	Leu											
46																			
47	pH Occution	inin o or :		28	3.0	1.2	8.8	2.0		2.3	2.7	2.6	4.6	4.2	2.7	4.4	2.4	6.0	4.9
40	Conduct	tivity @ 251		20	1,074	19.0	3,260	1/3		2,003.2	1.7	1,535.0	254.0	267.0	1,536.0	263.0	2,024.0	176.0	210.0
50	Chlorida	sea solias		12	8.5	5.3	25.0	19		75	<u>د.</u> 11.0	3.2			3.0		2.3		
51	Sulphor	as Sulobat	e	28	880	427	1.676	100		1.014 4	1.020.0	487.0	64.0	53.0	536.0	54.0	1.030.0	34.0	52.0
52	Iron (Tet	all all	-	28	66	61	247			126.2	89.0	31.0	37	22	37.0	14	63.0	21	21
53	Oil and (Grease					_++	Ť			2.0	2.0			2.0		2.0		
54																			
55																			
56 KIN	5 Secon	dary sedi	ment po	nd															
57	. .			Ha. af															
58	TATE		VERT		F14-66 (*	a. D#¥.	urdy.	LEU											
53	ън			12	28	0.5	38	20		3.0	28	31			32		4.6		
60	Conduct	tivitu (@ 25.)	c	12	1358	879	3.200	314		1434.1	1809.0	581.0			527.0		219.0		
61	Suspend	ded Soilds	_	12	26.4	42.3	144.0	2.5		1,404.1	1.4	2.0			3.6		5.3		
62	Chloride	•		11	6.4	3.6	14.5	0.4		12.6	11.0	11.0			12.0		7.0		
63	Sulphur	as Sulphat	e	12	510	503	1,888	27		587.7	897.0	166.0			17.3		129.0		
64	lron(Tot	a)		12	44	71	252	4		52.4	24.0	2.5			2.1		1.9		
65	Oil and (Grease									2.0	2.0			2.0		2.0		
66																			

Table 1test results 2011

1	Table	2																		
2	Kinne	ears Quarry	and E	nvirons -	Water (Qualit	y Test	Results												
3								Date Sameled		Typical Values	21/12/2010	10/12/2010	16/11/2010	04/11/2010	31/08/2010	24/08/2010	18/08/2010	21/07/2010	28/06/2010	21/06/2
4								Beinfell Dete	Proviour day		2.5	6	0	0		6	0		3	
5									Proviour week		61	25.5	2.5	9.5		13.5	2		35	
6									Weather	-	fino	shawors	shawers	overcart		overcart	fino		fine & cool	
7		Un observe Se		-h.a	a a b in Da		•			Report No.										
0	KIN I	upstream sa	naerco	Hu. of	reek in Pa	aaock	,													
9		Tart	Unit	s samples	Hees	d. Døv.	High	Leu												
10	_	- 4		- 03				F 0			5.7	FO	FO	65		6.0			5.0	
12		pri Conductivity @	25 C	23	118	25	155	5.2		125.0	5.r 108.0	115.0	5.0	84.0		136.0	130.0		126.0	
13		Suspended Soi	ds	12	15	26	93	3			3.8		5.6				5.4			
14		Chloride		– 12	2 16	6	32	6		15.7	13.0		17.0				15.0			
15	_	Sulphur as Sulp	hate	23	7.3	4.4	23.0	4.3		7.7	4.4	6.3	5.4	5.7		6.3	5.7		8.0	
15		Iron (Total)		23	0.3	0.2	0.9	0.0		0.3	0.2	0.5	0.3	0.1		0.2	0.2		0.2	
18		Oil and Grease									2.0		2.0							
19																				
20	KIN 2	Upstream Kir	nears a	t Outlet Pip	e from Sa	nderco	cks (Cre	ek in Sandel	rcock Quarry)											
21		Tert	Unit	r samples	Heat	d. Dev.	Hiak	Lau												
22																				
23		pН		19	4.5	1.3	7.9	3.1		4.3	4.9	4.7	4.3	4.5		5.1	5.0		3.8	
24		Conductivity @	25 C	19	271	124	548	87		255.1	126.0	216.0	186.0	135.0		222.0	231.0		226.0	
25		Suspended Sol	ds	10	1272	665	2,155	10		14.2	24.0		15.0				24.0			
27		Sulphur as Sulp	hate	10	73	4.4	152	15		82.1	25.0	54.0	42.0	42.0		48.0	52.0		61.0	
28		Iron (Total)		19	9.1	6.3	22.0	0.4		8.5	2.9	11.0	6.5	3.8		5.9	7.1		10.0	
29		Oil and Grease									2.0		2.0							
30	_																			
31		Unstrane of	Bridge	anar Harro'r D	d name a		. (cadinantati	an Dandi											
52	Kin J	opscream or	onage (Ha. af	sa near e	ncrance	elraide	sedimentad	on Ponaj											
33	_	Test	Unit	s samples	Hees	d. Døv.	High	Leu												
34		a.H		7 09	2.6	0.9	6.6	25		25	26	24	2.0	26	2.0	3.0	21	37	25	
36		Conductivity @	25 C	28	453	277	1,761	77		487.3	252.0	3.430.0	363.0	183.0	368.0	467.0	468.0	343.0	441.0	36
37		Suspended Soi	ds	12	27	71	253	1			21.0		3.5				1.6			
38		Chloride		– 18	13.9	3.7	21.0	5.6		13.1	12.0		16.0		15.0		14.0	15.0		2
39	_	Sulphur as Sulp	hate	28	131	113	682	6		199.8	60.0	1,340.0	97.0	96.0	132.0	123.0	137.0	114.0	145.0	11:
40	-	Iron (Total) Oil and Grance		28	2.5	2.5	14.0	0.3		4.6	5.r 2.0	89.0	57.0	1.5	1.9	1.0	1.1	1.2	1.0	
42		Oir and Grease									2.0		2.0							
43																				
44	KIN 4	Primary sedi	nent po	nd (Creek at	Harry's R	oad)														
45		Test	Unit	r samplas	Hees	4. Dev.	High	Lau												
46							-													
47		pН		28	3.0	1.2	8.8	2.0		2.3	2.8	3.7	2.2	2.6	3.5	3.0	3.2	8.8	2.7	;
48	_	Conductivity @	25 C	28	1,874	761	3,260	173		2,009.2	990.0	365.0	2,720.0	1,574.0	2,092.0	2,130.0	2,049.0	1,984.0	2,592.0	2,58
43		Suspended Sol	as	12	85	13.2	25.0	1.0		75	2.0		5.5		11.0		46.0	10.0		1:
51		Sulphur as Sulp	hate	28	880	427	1,676	100		1,014.4	400.0	93.0	1,700.0	1,024.0	1,371.0	1,096.0	1,152.0	1,417.0	1,267.0	1,20
52		Iron (Total)		28	66	61	247	F 0		126.2	5.2	1.6	0.9	32.0	4.8	6.6	18.0	0.4	95.0	10
53		Oil and Grease									2.0		2.0							
54																				
56	KIN 5	Secondare «	ediment	pond																
		-		Ha. of				_												
57		Tert	Unit	s samples	Hees	d. Døv.	High	Leu												
59		рH		12	2.8	0.5	3.8	2,2		3.0	5.4		2.2				3,1			
60		Conductivity @	25 C	12	1,358	879	3,200	314		1,434.1	493.0		2,703.0				967.0			
61		Suspended Soi	ds	12	26.4	42.3	144.0	2.5			6.7		864.0				9.2			
62		Chloride		11	6.4	3.6	14.5	0.4		12.6	7.0		9.0				6.0			
64		Sulphur as Sulp Iron (Tetral)	nate	12	510 AA	503	1,888	27		587.7	181.0		1,600.0				392.0			
65		Oil and Grease		12	. 44		202	4		92.4	2.0		6.0				1.0			

Table 2test results 2010

			20	10	
			20	10	
/06/2010	03/06/2010	18/05/2010	06/05/2010	22/04/2010	19/04/2010
	56	5.5	111.5	66	
	overcart/fin			irelated	
_	0	fine & warm	fine & uindy	showers	
	6.0	55	57	5.5	
	100.0	119.0	97.0	145.0	
		7.0		37.0	
		17.0		32.0	
	6.2	5.7	5.7	6.8	
	0.4	0.4	0.1	0.8	
	4.6				
	228.0				
	62.0				
	0.1				
3.8	3.5	3.1	3.5	3.5	3.6
360.0	444.0	416.0	351.0	361.0	418.0
		1.2		3.2	
21.0	FO	15.0	101.0	16.0	17.0
113.0	5.3	180	101.0	00.0	131.0
0.5	0.1	1.00	1.04		1.00
2.7	2.6	2.3	3.9	2.6	2.6
2,588.0	225.0	2,036.0	1,088.0	1,960.0	2,418.0
12.0		2.0		2.0	10.0
1209.0	311.0	r.0 829.0	336.0	25.0 630.0	1293.0
100.0	73.0	78.0	11.0	4.4	125.0
		2.2		2.8	
		2,113.0		1,000.0	
		144.0		5.0	
		732.0		252.0	
		76.0		3.8	

Table 3test results 2009

Table 2 Numera: Query and Environs: Water Results Provide County Provide County <th>_</th> <th></th>	_																						
Share s	1	Table	2																				
Nime als Subjery and L Priving - Walk Lobality - Fix Peaks Intervine Int		V:	n .		J F			7	. T	Desulte													
Image: Section of the sectin of the section of the section	2	KINN E	ears Qu	Jarry ar	na E n v	rirons - v	water t	auancy	, les	(Hesults								2009					
Image: Control of the state of the	3									Date Sameled		Typical Value	03/12/2009	18/11/2009	05/11/2009	29/10/2009	08/10/2009	19/08/2009	25/06/2009	20/05/2009	31/03/2009	11/02/2009	29/01/200
Image: Control of the standard of the s	4									Reinfell Date	Provinur day		0.0	8.0	0.0	21.0	0.0	0.0	0.0	2.0	50.0	0.0	5.
View Mark mark v inc. No. Mark Mark <t< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Providur Look</td><td></td><td>0.0</td><td>\$.0</td><td>28.5</td><td>160.0</td><td>1.0</td><td>0.0</td><td>206.0</td><td>45.0</td><td>91.5</td><td>1.0</td><td>10.</td></t<>	5										Providur Look		0.0	\$.0	28.5	160.0	1.0	0.0	206.0	45.0	91.5	1.0	10.
Cite Uptrease Standardcocks generating Constant in Predexes) Preprint in Predexes Preprint in Predxes Preprint in Predexes	6										Weather		overcart, hot	overcart	fine, hat	hat, humid	fine, windy	fine,sunny	fine	rain	overcart, rain	hot/humid	shaworstsunn
CHI I Ustrice StateCocks unif Clock in Paddeds) Ustrice StateCocks unif Clock in Paddeds) Ustrice StateCocks unif Clock in Paddeds) Image: StateCocks unif Clock in Paddeds) Ustrice StateCocks unif Clock in Paddeds Ustrice StateCock unif Clock in Paddeds Ustrice StateCocks unif Clock in Paddeds Ustrice StateCock unif Clock unif Clock unif Clock unif Clock unif Clock unif Clock un	7											Report No.											
Tex Note Tex Note N	8	KIN 1	Upstrea	am Sande	ercocks	quarry (Cre	eek in Pa	addock)															
H Dial Di	э		Test		Unite	rempler	Heat	d. Dev.	High	Leu													
pt pt< pt<< pt<	10																						
Conducting & BC 20 100 20 100 20 100 200 141 100 <t< td=""><td>11</td><td></td><td>pН</td><td></td><td></td><td>23</td><td>6.0</td><td>0.8</td><td>8.8</td><td>5.2</td><td></td><td>6.1</td><td>5.7</td><td>5.8</td><td>6.3</td><td>5.2</td><td>7.1</td><td>6.4</td><td>8.8</td><td>6.2</td><td>5.3</td><td>6.0</td><td>6.0</td></t<>	11		pН			23	6.0	0.8	8.8	5.2		6.1	5.7	5.8	6.3	5.2	7.1	6.4	8.8	6.2	5.3	6.0	6.0
Subplote	12		Conduct	ivity @ 25 I	с	23	118	25	155	44		125.0	124	145	155	139	131	125	107	44	110	121	30
Subplice Subplice Y	13		Chlorida	ied Solids		12	15	20	33	5		15.7		3.1		3		3.1	16	55	4.0	3.2	5.
Interfree Part	15		Sulphura	as Sulobat	c	23	7.3	44	23.0	43		77	65	61	71	6.3	19	4.3	52	23	61	49	51
Other dense Other dense Units Pipe from Sunderceck 0 courty of the fiber of th	16		Iron(Tota	as caipitat sli		23	0.3	0.2	0.9	0.0		0.3	0.17	0.26	0.33	0.28	0.25	0.94	0.03	0.38	0.26	0.23	0.22
Kin 2 Upper sea Sundary counts of the profess Sundary counts (Counts Sundary) Var Kin 4 profess (Counts Sundary)	17		Oil and C	Grease																			
VIR.2 Upteress Kompars at Outlet Pige from Subdercords (Creck in Sandercords (Creck in Sande	18																						
M. Z. M. Z. Operating Annexa and Dull Light fram Subderceds (Greek in Subderced (Greek in Subderced (Greek in Subderced (Greek in Subderced) (Greek in Subderced (Greek in Subderced) (Greek in Subderced) (Greek in Subderced) (Greek in Subderced) (Greek in Subderced (Greek in Subderced) (G	19							-												Was KIN 4	pre Nov 07		
Image: Section of the sectio	20	KIN 2	Upstrea	an Kinne	ars at O	Jutlet Pipe	trom Sa	ndercoc	its (Cre	ek in Sanderco	ck Quarry)												
H H	21		Test		Unite	rempler	Heat	d. Dev.	High	Leu													
b pH p3 c. 5, 10 7, 3 3.1 4.3 3.6 3.7 6.6 6.2 7, 7 5.6 0.5<	22																						
Conducting 25 C 19 27 19 57 28 67 285 260 455 37 385 400 22 Despendenting 00 27 19 57 65 15 66 13 10 75 20 65 13 10 75 20 64 16 13 75 20 10 75 20 10 75 20 10 75 20 10 75 20 10 75 20 14 10 10 53 22 261 0.44 14 21 55 2 Kirit Upstead District Final Hit List List <thlis< td=""><td>23</td><td></td><td>рН</td><td></td><td></td><td>19</td><td>4.5</td><td>1.3</td><td>7.9</td><td>3.1</td><td></td><td>4.3</td><td>3.8</td><td>3.3</td><td>3.8</td><td>3.7</td><td>6.5</td><td>6.2</td><td>7.9</td><td>4.7</td><td>5.6</td><td>3.5</td><td>3.6</td></thlis<>	23		рН			19	4.5	1.3	7.9	3.1		4.3	3.8	3.3	3.8	3.7	6.5	6.2	7.9	4.7	5.6	3.5	3.6
Durpholog Durpholog <t< td=""><td>24</td><td></td><td>Conduct</td><td>ivity @ 25 I</td><td>С</td><td>19</td><td>271</td><td>124</td><td>548</td><td>87</td><td></td><td>255.1</td><td>260</td><td>456</td><td>344</td><td>305</td><td>152</td><td>151</td><td>153</td><td>87</td><td>356</td><td>400</td><td>21</td></t<>	24		Conduct	ivity @ 25 I	С	19	271	124	548	87		255.1	260	456	344	305	152	151	153	87	356	400	21
Support Support <t< td=""><td>25</td><td></td><td>Suspend</td><td>led Solids</td><td></td><td>10</td><td>272</td><td>4.2</td><td>2,155</td><td>10</td><td></td><td>14.2</td><td></td><td>28</td><td></td><td>(5)</td><td></td><td>234</td><td>15</td><td>2155</td><td>63</td><td>37</td><td>ы</td></t<>	25		Suspend	led Solids		10	272	4.2	2,155	10		14.2		28		(5)		234	15	2155	63	37	ы
Interform 13 3.3 6.3 22.0 0.4 6.5 19 1 19 10 5.34 5.2 2.51 0.44 1.46 2.1 5.3 0 B and Gresse 0 B	27		Sulphur	as Sulphat	e	13	73	38	152	× 15		82.1	80	113	89	80	38	15.3	26	15	118	37	65
0 Oil and Gresse 0 <	28		Iron(Tota	as caipilia: slì		19	9,1	6.3	22.0	0.4		8.5	13	11	19	10	5.34	5.2	2.61	0.44	1.46	21	5.12
0 0 <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<>	29		Oil and C	Grease																			
KH 3 Upstress of Bidge our Hundred and Particle Clarge sediments on Pond Mail Law	0																						
Kink 3 Upstress of Bridge over Harry? Rates extrance (Large sedmentation Pond) Lau Lau <thlau< th=""> Lau <thlau< th=""> L</thlau<></thlau<>	31																			Was KIN 6	pre Nov 07		
0 Test Usive remark Head Lead Lead <thlead< th=""> Lead Lead</thlead<>	32	KIN 3	Upstrea	am of Bri	dge ove	r Harry's Ro Ma. af	d near e	ntrance	(Large	sedimentation	Pond)												
A P	33		Test		Unite	rempler	Hees	d. Dev.	High	Lau													
S pH 23 3.6 0.3 6.6 2.5 3.5 2.6 3.0 3.4 3.1 3.5 6.0 5.3 6.6 3.3 3.2 2.6 Conductivity 0 25 2.2 4.55 7.7 7.7 7.7 467.3 5.3 641 613 3.56 0.9 5.3 6.6 3.3 3.2 2.2 Chioride 16 13.7 7.7 25.5 1 1 7.4 4.7 4.8 6.5 2.83 11 </td <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	4								_														
Conducting @ 25 C 23 433 277 (761) 77 467.3 537 645 613 358 348 328 257 77 360 644 447.3 537 645 613 358 348 328 257 77 350 11 11 14 12.2 13.6 17 55.6 18 14 3 Sulphare Sulphate 2.3 2.5 2.5 10.0 5.6 133 7.7 4.6 3.65 133 6.5 2.8 10.8 11.8 14 12.2 13.6 17 5.6 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 16.5 18 18	5		PH			29	3.6	0.9	6.6	2.5		3.5	2.6	3.0	3.4	3.1	3.5	6.0	5.3	6.6	3.3	3.2	2.8
Suppring Solution 11 21 11 200 50 101 11 200 50 101 11 200 50 101 11 200 50 101 11 602 60 113 117 165 163 95 98 96 7 25 11 11 602 60 113 117 165 168 95 38 56 73 39 103 105 101 101 100	5		Conduct	ivity @ 251	C	23	453	277	1,761	77		487.3	537	545	613	355	348	326	257	252	360	664	40
3 Support as Support 2.3 101 113 482 6 193.8 176 165 165 175 36 165 73 33 109 163 1 0 Honf Ortholl 23 2.5 2.5 1.0 0.3 4.6 3.62 2.61 3.83 1.33 3.6 1.3 2.27 0.25 4.45 2.69 1 0 Honf Greace 2.5 2.5 1.0 0.3 4.6 3.62 2.61 3.83 1.33 3.6 1.3 2.27 0.25 4.45 2.69 1 1 Art Had Had <t< td=""><td></td><td></td><td>Chlorida</td><td>iea Solias</td><td></td><td>18</td><td>13.9</td><td>37</td><td>200</td><td>56</td><td></td><td>13.1</td><td></td><td>r.4 14</td><td></td><td>4.7</td><td></td><td>0.5</td><td>0.5</td><td>200</td><td>18</td><td>14</td><td>5</td></t<>			Chlorida	iea Solias		18	13.9	37	200	56		13.1		r.4 14		4.7		0.5	0.5	200	18	14	5
0 hon (Tota) 23 2.5 2.5 2.5 14.0 0.3 4.6 3.62 2.61 3.83 1.93 3.6 1.3 2.27 0.25 4.45 2.69 1 0 Oil and Greace Image: Second and	ie i		Sulphur	as Sulphat	e	23	131	113	682	6		199.8	178	165	169	35	98	56	73	39	109	169	115
Image: Normal disease Cill and Grease	40		Iron(Tota	s)		29	2.5	2.5	14.0	0.3		4.6	3.62	2.61	3.83	1.93	3.6	1.3	2.27	0.25	4.45	2.69	1.3
2 3 4	41		Oil and C	Grease																			
A KIN 4 Primary sediment pond (Creek at Harry's Road) Max diamond (Creek at Harry's	12																						
Kill 4 Primary sedient pond (Creek at Harry's Road) Max Max </td <td>\$3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	\$3							_															
S Last La	44	KIN 4	Primary	sedimer	nt pond (Creek at H	larry's Re	oadj				_											
6 H 28 3.0 1.2 8.8 2.0 2.5 2.2 2.6 2.2 2.6 2.2 3.5 3.3 3.3 2.4 2.5 2.5 2.2 2.6 2.2 3.0 12.8 3.0 11.7 12.8 3.6 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 <	\$5		Test		Unitr	samples	Hees	d. Dav.	High	Leu													
PH PH <th< td=""><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	16																						
Conductivity g 25 C 28 15/4 701 3,200 173 2,003,2 3260 243 2274 1215 3100 1224 173 1862 2555 15 0 Chloride 17 8,5 5,3 25,0 1,3 7,5 4,3 3,4 5 3 1,3 11 7 1 Sulphursz Sulphate 28 860 427 1,676 100 1,014.4 1665 887 377 360 1676 467 100 642 1131 50 2 Iron[Tota] 28 66 61 247 0 126.2 178 106 105 40 247 70 166 105 3 Oil and Grease	17		pH			28	3.0	1.2	8.8	2.0		2.9	2.5	2.2	2.6	2.2		3.5	3.3	3.9	2.4	2.5	2.0
Supported Solids Ide / Ide / Ide / Ide / Solid /	8		Conduct	ivity @ 25 i Ind Second	C .	28	1,874	761	3,260	173		2,009.2	3260	2431	2274	1215		3100	1294	173	1822	2555	1516
Ching of the second area solublate 10	.ə :0		Chlorida	iea solids		12	8.5	5.3	25.0	1.0		75		5		4.3		4	3.7	53	2.6	1.8	4
Iron (Total) 28 66 61 247 0 126.2 178 106 105 40 247 70 1.84 72 166 01 3 Oil and Grease Oil	1		Sulphur	as Sulphat	e	28	880	427	1.676	100		1.014.4	1665	887	977	360		1676	467	100	642	1191	500
3 0il and Greese ind	2		Iron(Tota	 ຍ)	-	28	66	61	247	0		126.2	178	106	105	40		247	70	1.84	72	166	6
4 5 6 6 6 7 6 7 6 7 6 7 6 7	3		Oil and C	Grease																			
S No	54																						
Kin 5 Secondary sediment pord Na. of Mass	55		-			- <u> </u>														Was KIN 1	pre Nov 07		
Tart Usity rample Has A. Dav. High Luu Luu Interpretein Inte	96	KIN 5	Second	aary sedi	ment po	nd He.ef																'	
8 9H 12 2.8 0.5 3.8 2.2 3.0 2.3 2.3 2.3 3.0 3.2 3.0 2.2 3.0 2.3 2.3 3.0 3.20 3.8 2.2 3.0 3.0 2.3 2.3 3.0 3.20 3.8 2.2 3.0 3.0 2.3 2.3 3.0 3.20 3.6 2.2 3.3 0 Conductivity @ 25 C 12 1,358 873 3,200 314 1,434.1 2237 733 3200 366 314 530 2252 333 1 Suspended Soilds 12 26.4 42.3 144.0 2.5 78 3.1 19 13 2.5 19 8.7 7 2 Chloride 11 6.4 3.6 14.5 0.4 12.6 <3	57		Test		Unitr	samples	Hees	d. Dav.	High	Leu													
B PH 12 2.8 0.5 3.8 2.2 3.0 2.3 2.3 3.0 3.2 3.8 2.9 2.6 2 O Conductivity @ 25 C 12 1,358 873 3,200 314 1,434.1 2237 733 3200 366 314 500 2252 333 1 Suspended Soilds 12 26.4 42.3 144.0 2.5 78 3.1 19 13 2.5 19 8.7 7 2 Chloride 11 6.4 3.6 14.5 0.4 12.6 <3 0.4 14.5 8 3.1 8 7 2 Chloride 11 6.4 3.6 14.5 0.4 12.6 <3 0.4 14.5 8 3.1 8 7 3 Sulphur as Sulphate 12 503 1,888 27 587.7 605 212 1888 352 27 152 38 28 28 28 28 28 28 28 28 28	58																						
Conductivity @ 25 C 12 1,358 879 3,200 314 1,434.1 2297 793 3200 966 314 590 2252 933 1 Suspended Soilds 12 26.4 42.3 144.0 2.5 783 310 966 314 590 2252 933 2 Chloride 11 6.4 3.6 14.5 0.4 12 13 2.5 19 8.7 7 2 Chloride 11 6.4 3.6 14.5 0.4 12.6 <3	53		pН		_	12	2.8	0.5	3.8	2.2		3.0		2.3		2.3		3.0	3.2	3.8	2.9	2.6	2.3
Suspended Solids r 12 20.4 42.3 144.0 2.5 6 3.1 13 13 13 2.5 19 8.7 7 2 Chloride 11 6.4 3.6 14.5 0.4 12.6 <3	0		Conduct	ivity @ 25 i La secola	C	12	1,358	879	3,200	314		1,434.1		2297		793		3200	366	314	590	2252	933
3 Sulphur as Sulphate 12 510 503 1,888 27 505 212 1888 352 27 152 388 4 Iron(Total) 12 44 71 252 4 52.4 54 3.57 252 20 3.59 5.67 77 5 Oil and Grease Iron (Total) Iron (Total) Iron (Total) Iron (Total) 12 44 71 252 4 52.4 54 3.57 252 20 3.59 5.67 77	10		Chlorida	iea sollas		12	20.4	42.3	144.0	2.5		12.6		۲۵ 22		3.1		13	13	2.5	19	ö./ 7	
4 Iron (Total) 12 44 71 252 4 54 3.57 252 20 3.59 5.67 77 77 5 Oil and Grease Image: Control of the control of	3		Sulphur	as Sulphat	e	12	510	503	1.888	27		587.7		605		212		1888	352	27	152	928	283
5 Oil and Grease	4		Iron(Tota	5) 5)	-	12	44	71	252	4		52.4		54		9.57		252	20	3,59	5.67	77	12
	5		Oil and C	Grease																			

Table 4test results 2008

Table	e 2																	
Kinne	ears Qu	Jarry an	id Envi	irons - V	₩ater	Quality	v Tesl	t Results								:	2008	
								Date Sameled		Typical Value,	26/11/2008	18/11/2008	05/11/2008	05/09/2008	18/08/2008	21/07/2008	23/06/2008	267057200
								Reinfell Date	Proviour day		86.0	11.0						0
									Provinur wook		206.5	56.5						32
									Weather		shauers	rain						6
										Report No.								
KIN 1	Upstre	an Sande	rcocks q	juarry (Cre	ek in P	addock)												
	-			Ha. of														
	Test		Unitr	semples	Hees	:d. Døv.	High	Leu										
	- H			00	6.0			5.0		6.1	57	6.0	6.2	50	6.0	6.7	6.2	6
	Conduct	rivitu @ 25 C	2	23	118	25	155	× 44		125.0	110	132	130	103	72	36	30	1
	Suspend	ded Soilds		12	15	26	93	3			4.6	11	10	7	2	2.2	3	
	Chloride			12	16	6	32	F 6		15.7	15	14	18	13	24	15	18	
	Sulphur	as Sulphate	•	23	7.3	4.4	23.0	4.3		7.7	6.4	7.2	7	7.5	6	6	6.7	6
	iron(Tot	al)		23	0.3	0.2	0.9	0.0		0.3	0.37	0.53	0.6	0.19	0.02	0.23	0.18	0.
	Oil and 0	Grease																
KIN 2	Upstre	an Kinnea	ars at Ou	utlet Pipe	trom Sa	ndercoc	ks (Cre	ek in Sanderc	ock Quarry)									
	Test		Units	rempler	Hear	d. Dev.	Hiak	Leu										
	рН			19	4.5	1.3	7.9	3.1		4.3	3.7	4.1	5.8	4.6	5.5	5.9	4.3	7
	Conduct	tivity @ 25 C	;	19	271	124	548	87		255.1	305	278	170	212	124	180	330	1
	Suspend	ded Soilds		10	272	665	2,155	16			27	28	31	86	72	38	34	
	Chloride			10	12.4	4.2	18.0	3.6		14.2	12	13	15	9	23	16	17	
	Sulphur	as Sulphate		19	73	38	152	15		82.1	103	121	45	82	48	71	104	
	Iron (1 ob	alj Dene en		19	9.1	6.3	22.0	0.4		8.5	12	11	8.96	0.82	0.03	5.53	9,93	3.
	Uliana	arease																
KIN 3	Unstre	an of Brid	lae over	Harra's Re	i near e	otrance	(I arae	sedimentation	Pond									
	oporte		ige orer	Ha. af	, incluir c		(cury	Jedinentation	, ronaj									
	Test		Unitr	semples	Hees	d. Dov.	High	Leu										
	pH			29	3.6	0.9	6.6	2.5		3.5	3.5	3.0	2.2	3.0	2.8	3.4	3.2	
	Conduct	tivity @ 25 C	;	23	453	200	1,761			487.3	469	377	2450	731	1624	470	590	5
	Chlorida	ied Solids		12	21	27	250	56		12.1	5.0	5.3	3.4	14	4.0	3	(.4	
	Sulphur	ne Sulobate		29	13.0	113	21.0	6		199.8	142	14.4	1348	6.4 282	1460	180	11	
	Iron(Tot)	as Gaiphate all		23	25	25	14.0	0.3		4.6	2.85	2 7 3	151	37	130	3.0	2.72	2
	Oil and 0	on Grease			2.0	2.0	14.0	0.0		4.0	2.00	2.10	101	01	100	0.0	E.1 E	
KIN 4	Primary	y sedimen	t pond ((Creek at H	larry's R	load)												
			H-7-	Ha. of														
	lart		Unitr	remplor	He en	:d. Døv.	High	Lau										
	ъH			98	3.0	10		1 20		7 99	26	2.4	91	37	97	97	96	
	Conduct	tivitu @ 25 C		28	1.874	761	3,260	173		2.003.2	2033	344	1976	182	1553	1915	1980	32
	Suspend	ded Soilds		12	12.2	19.2	59.0	1.8		2,000.2	35	5	2	10	8.3	2	42	
	Chloride			17	8.5	5.3	25.0	1.9		7.5	27	4	25	13	14	8	7	
	Sulphur	as Sulphate		28	880	427	1,676	100		1,014.4	950	442	1223	52	1320	1033	114.4	19
	Iron(Tot	a)		28	66	61	247	F 0		126.2	150	55	24	3,54	50	142	183	2
	Oil and 0	Grease																
				_														
KIN 5	Secon	dary sedir	nent pon	id H= -4														
	Test		Unite	samples	Hees	d. Dev.	Hiak	Lau										
	pН			12	2.8	0.5	3.8	2.2		3.0	2.8	2.7	3.0	3.9	3.5	2.7	2.7	
	Conduct	tivity @ 25 C	;	12	1,358	879	3,200	314		1,434.1	1321	645	600	221	387	1890	1890	20
	Suspend	ded Soilds		12	26.4	42.3	144.0	2.5			20	3.3	21	15	2.1	145	26	
	Chloride	•		11	6.4	3.6	14.5	0.4		12.6	22	5	32	35	24	8	7	
	Sulphur	as Sulphate	•	12	510	503	1,888	27		587.7	481	254	168	82	195	1186	1057	15
	Iron(Tot	al)		12	44	71	252	4		52.4	40	15	123	0.4	1.4	50	116	5
	1001 10																	

04/2008	31/03/2008	03/03/2008	04/02/2008
	0.0		25.0
	44.0		\$1.5
	fine		showers
6.0	6.6	5.4	5.7
111	940	512	60
2,3	2.1	1.9	30
15	19.5	16	25
5.9	F 6	7.4	
5.5	5.0	1.4	
0.02	0.02	0.13	0.55
4.8	5.3	4.1	3.7
260	268	688	282
97	3	28	1230
14	17.9	14	0031
14	17.9	14	
79	36	68	34
6.79	9.4	6.23	3.85
3.2	29	34	3.9
0.6	6.0	1000	0.0
601	462	1066	300
51	5.6	3.3	22
13	16.9	114	10
208	154	148	129
2.77	1.86	2.2	5.87
_			
2.5	5.6	2.6	4.4
2360	2300	1810	640
28	7.1	3.4	42
6	8.9	9	10
947	1131	1394	332
108	113	167	3.36
100	114	101	0.00
2.7	3.7	2.8	4.0
1885	1216	6400	285
43	4.8	6.4	90
6	10.3	15	10
773	503	1304	10.4
66	40	454	4 5 9
00	42	101	4.55

Table 5test results 2007

1	Table	2																						
2	Kinne	ars Qu	arry an	d Env	irons - Y	Water∣	Quali	ty Te	est Res	ults								2	007					
3								-	Date	Sameled		Typical Value	10/12/2007	14/11/2007	20/08/2007	25/07/2007	28/05/2007	14/05/2007	02/04/2007	08/03/2007	05/03/2007	05/02/2007	08/01/2007	04/01/2007
4									Reist	all Data	Provinur day Provinur usek				0.0 55.0		0.0 2.0	32.0 35.0	3	33.5			0 41.5	23 39
6											Weather						e	e		e	!-	e	e.,	
7												Report No.			raining		rine	rine	rine	rine	rain	rine	rine	rain
8	KIN 1	Upstrea	m Sande	rcocks	quarry (Cr Ma. of	eek in P	addoc	k)																
э		Test		Unitr	rempler	Hees	d. Dav	. Hi	96 -	Leu														
10		ъH			23	6.0	0.0	3	88	5.2		61	7.3	6.4										
12		Conducti	vity @ 25 C	;	23	118	2	5	155 🚩	44		125.0	203	189										
13		Suspende	ed Soilds		12	15	20		93	3		15.7	39	4.4										
15		Sulphur a	s Sulphate	•	23	7.3	4.	1 2	3.0	4.3		7.7	9.1	9.2										
16		Iron (Tota	ŋ		23	0.3	0.:	2	0.9 🚩	0.0		0.3	0.59	0.17										
17		Oil and G	irease																					
19																								
20	KIN 2	Upstrea	n Kinnea	ars at O	utlet Pipe Ma. af	fro n Sa	nderc	ocks (Creek in	Sanderco	ck Quarry)													
21		Test		Unitr	semples	Hees	:d. Dav	. Hi	46	Leu														
22		pН			19	4.5	1.3	3	7.9	3.1		4.3	3.1	3.0	4.6	3.6	3.8	3.2	3.5	2.2	inaccoriblo	3.0	2.6	3.2
24		Conducti	vity @ 25 C	;	19	271	12	د ا	48	87		255.1	930	853	778	494	280	528	600	2200		1123	1230	951
25		Suspende Obloride	ed Soilds		10	272	665	5 2,7	8.0	16 3.6		14.2	11200	5750	344	394	258	24	25	8325		99 27	74	5300
27		Sulphur a	s Sulphate	•	10	73	3	3	152	15		82.1	406	344	284	200	109	206	225	1120		647	734	501
28		Iron (Tota	Ŋ		19	9.1	6.:	3 2	2.0	0.4		8.5	11	14	5.07	11	4.38	6.66	24	88		117	190	31
30		Uii and G	rease																					
31				-		_																		
32	KIN 3	Upstrea	n of Brid	lge o v er	Harry's R Ha. af	d near e	ntrand	:e (Lai	ge sedi	nentation	Pondj													
33		Tast		Unitr	samplas	Hees	:d. Dav	. Hi	46	Leu														
35		pН			29	3.6	0.3	9	6.6	2.5		3.5	7.9	3.0	4.6	3.4	2.4	3.1	3.0	2.4	3.0	3.0	3.0	3.3
36		Conducti	vity @ 25 C	;	29	453	27	1,	761	77		487.3	2700	355	914	1297	950	1060	1400	1160	1466	1052	825	806
38		Chloride	ea Sollas		12	13.9	3.1		1.0	5.6		13.1	4.2	5.6	16	40	38	23	3.5	57	1.7	21	25 40	0.2
39		Sulphur a	s Sulphate	•	29	131	11:	3 6	82	6		199.8	5331	442	326	770	399	267	800	2180	853	475	433	410
40		Iron (Tota Oil and G	i) irease		29	2.5	2.9	5 1	4.0	0.3		4.6	12	12	8.24	13	8.96	15	28	14	28	18	6.96	5.29
42																								
43		Drimara	cadinan	t nond (i	Craak at b	larra'r D	an di																	
44	KI N 4	r n s ary	seaimen	(pona (Ha. af	iarry s n	vauj			_														
45		Tert		Unitr	samples	Hees	:d. Døv	. Hi	46	Leu														
47		PН			28	3.0	1.:	2	8.8	2.0		2.9	3.1	2.8										
48		Conducti	vity @ 25 C ed Soilde I	;	28	1,874	76	1 3,2	80	173		2,009.2	2180	1698 5.2										
50		Chloride			17	8.5	5.3	3 2	5.0	1.9		7.5	20	14										
51		Sulphur a	as Sulphate n	•	28	880	42	1,6	76	100		1,014.4	1429	1066										
53		Oil and G	ij irease		20	00		1 2	41			120.2		40										
54																								
55	KIN 5	Second	ary sedi	ent por	nd																			
57		Tart		llait-	Hu. of	H	d P		-1	1														
58		1001																						
59		pH Constant			12	2.8	0.9		3.8	2.2		3.0	2.9	3.0	4.7	dry	dry	dry	dry	2.6	2.3	3.2	3.1	3.4
61		Suspende	ed Soilds	,	12	26.4	42.3	3 14	4.0	2.5		1,434.1	1648	140	36					1560	3.5	31	36	44
62		Chloride	<u>.</u>		11	6.4	3.0	5 1	4.5	0.4		12.6	20	12	15					30	27	13	35	20
63 64		Sulphur a Iron (Tota	as Sulphate A	•	12	510 44	50:	s 1,8 1 s	52	27		587.7	808 38	631	25					836	1380	1040	832	2.88
65		Oil and G	irease							*					0.2						20		4.0	2.00
66																								

1	Table	2															
2	Kinne	ars Qu	arru ar	nd Env	virons - '	Water	Qualit	u Test	Besults						2006		
3	1,11110		any a			in ator	Quun	y 100	Data Samalad		Tunical Value	1241242006	0541242006	124142006	0941142006	1641042006	123093
4									Reinfell Date	Provinur day	Typical value	TEPTEREOVO	56	ISPINZOVO	091112000	Torior2006	101031
5										Provinur wook			60				
6										Weather		fino	fine				
7											Report No.						
8	KIN 1	Upstrea	an Sande	ercocks	quarry (Cr	eek in P	addock)									
э		Test		Units	rempler	Hees	d. Dav.	High	Leu								
10																	
11		pH Conducti	uitu @ 25.0		23	6.0	0.8	8.8	5.2		6.1						
13		Suspend	ed Soilds		12	15	26	93	3		120.0						
14		Chloride			12	F 16	6	32	6		15.7						
15		Sulphur a	as Sulphat	e	23	7.3	4.4	23.0	4.3		7.7						
15		liron (i ota Dil and G	ilj iranca		23	0.3	0.2	0.9	0.0		0.3						
18		Cirana a	lease														
19																	
20	KIN 2	Upstrea	m Kinne	ars at O	utlet Pipe	from Sa	nderco	cks (Cre	ek in Sanderco	ock Quarry)							
21		Test		Unitr	rempler	Hees	d. Dav.	High	Leu								
22		- 4															
23		pH Conducti	vitu @ 25 (C.	19	4.5	1.3	7.3 548	3.1		4.3		2.6	3.3	3.1	4.6	
25		Suspende	ed Soilds	Ī	10	272	665	2,155	16				384	57	490	49	
26		Chloride			Z 10	12.4	4.2	18.0	3.6		14.2		39	24	21	25	
27		Sulphur a	as Sulphati n	e	19	73	38	152	15		82.1		622	341	627	332	
20		Dil and G	ilj irense		19	3.1	6.3	22.0	0.4		0.5		03	37	134	4.43	
30		Cir dild C															
31																	
32	KIN 3	Upstrea	an of Brid	dge over	r Harry's R Ha. af	d near e	ntrance	e (Large	sedimentation	Pond)							
33		Test		Unitr	rempler	Hees	d. Dev.	High	Leu								
34																	
35		pH Conducti	vitu @ 25 (29	3.6	277	1761	2.5		487.3		2.7	2.9	3.4 662	2.9	
37		Suspende	ed Soilds	Ĭ	12	27	71	253	1		401.0		16	3.6	26	30	
38		Chloride			7 18	1 3.9	3.7	21.0	5.6		13.1		21	19	27	22	
39		Sulphur a	as Sulphati A	e	29	131	113	682	6		199.8		425	399	258	327	
40		Oil and G	ing irease		23	2.0	2.0	14.0	0.3		4.0		0.01	14	14	4.00	
42																	
43																	
44	KIN 4	Primary	sedimen	nt pond (Creek at I Hs. sf	Harry's R	load)										
45		Test		Units	remplar	Hees	d. Dav.	High	Leu								
46		- 14			1 00	2.0	10										
48		Conducti	vity @ 25 (C	20	1.874	761	3,260	173		2.003.2						
49		Suspend	ed Soilds	-	12	12.2	19.2	59.0	1.8								
50		Chloride			17	8.5	5.3	25.0	1.9		7.5						
51		Sulphur a	as Sulphat In	e	28	880	427	1,676	100		1,014.4						
53		Oil and G	nj irease		20	00	01	- 241	· ·		120.2						
54																	
55		8.															
56	KIN 5	Second	ary sedi	ment po	nd He.ef												
57		Test		Unitr	remplar	Hees	d. Døv.	High	Leu								
58		ъH			F 10		0.5				7 20				2.4		
60		Conducti	vity @ 25 (C	12	1.358	879	3,200	314		1.434.1		355	2.3	355	ary	2
61		Suspend	ed Soilds		12	26.4	42.3	144.0	2.5				4.6	5	71		
62		Chloride			11	6.4	3.6	14.5	0.4		12.6		13	17	15		
63		Sulphur a	as Suiphat Ju	e	12	510	503	1,888	27		587.7		539	1090	547		1
65		Oil and G	irease		12	44		202	4		52.4		2.14	23	20		
66																	

Table 6test results 2006

Family	Botanical name	Common Name	Status*	Suitable for rehabilitation#
Adiantaceae	Adiantum hispidulum	Rough maidenhair		Ν
Apocynaceae	Tabernaemontana pandacaqui	Banana bush		Ν
Araceae	Gymnostachys anceps	Settler's Flax		Y – S
Araliaceae	Polyscias elegans	Celerywood		Y – S
Araliaceae	Polyscias murrayi	Pencil Cedar		Y – S
Arecaceae	Archontophoenix cunninghamiana	Bangalow palm		Y – S
Arecaceae	Calamus muelleri	Lawyer vine		Ν
Argophyllaceae	Argophyllum nullumense	Silver leaf	ROTAP 3RCa ³ ; Locally significant	N
Asparagaceae	Asparagus aethiopicus	Basket Asparagus Fern	Exotic	Ν
Asteraceae	Ageratina riparia	Mist flower	Exotic	Ν
Asteraceae	Ageratum houstonianum	Blue Billy Goat Weed	Exotic	N
Asteraceae	Ambrosia artemisiifolia	Annual Ragweed	Exotic; Declared Noxious	Ν
Asteraceae	Baccharis halimifolia	Groundsel Bush	Exotic; Declared Noxious	Ν
Asteraceae	Bidens pilosa	Cobblers Pegs	Exotic	Ν
Basellaceae	Anredera cordifolia	Madeira Vine	Exotic	Ν
Bignoniaceae	Jacaranda mimosifolia	Jacaranda	Exotic; naturalised	Ν
Blechnaceae	Blechnum cartilagineum	Gristle fern		N
Caesalpiniaceae	Senna pendula var. glabrata	Winter senna	Exotic	Ν
Casuarinaceae	Allocasuarina torulosa	Forest oak		Y – P
Cunoniaceae	Davidsonia jerseyana	Davidson's Plum	E1; E2; ROTAP: 2ECi	Ν
Cyatheaceae	Cyathea cooperi	Straw Treefern		N
Davalliaceae	Nephrolepis cordifolia	Fishbone Fern	Exotic	Ν
Dicksoniaceae	Calochlaena dubia	Common ground fern		Ν
Dioscoreaceae	Dioscorea transversa	Native yam		Ν
Elaeocarpaceae	Elaeocarpus reticulatus	Blueberry Ash		Y – S
Epacridaceae	Trochocarpa laurina	Tree heath		Y – S
Euphorbiaceae	Breynia oblongifolia	Coffee bush		Y – P
Euphorbiaceae	Croton verreauxii	Native Cascarilla		Y – S
Euphorbiaceae	Mallotus philippensis	Red Kamala		Y – P
Eupomatiaceae	Eupomatia laurina	Bolwarra		Ν

Table 7 Flora recorded at Kinnears Quarry during TSC field surveys

Family	Botanical name	Common Name	Status*	Suitable for rehabilitation#
Fabaceae	Hovea acutifolia	Brush Hovea		Y – P
Fabaceae - Caesalpinioideae	Caesalpinia decapetala	Thorny Poinciana	Exotic; Declared Noxious	N
Fabaceae - Faboideae	Desmodium rhytidophyllum	Hairy tick-trefoil		N
Fabaceae - Faboideae	Desmodium uncinatum	Silver-leaved Desmodium	Exotic	N
Fabaceae - Faboideae	Macroptilium lathyroides	Phasey Bean	Exotic	N
Fabaceae - Mimosoideae	Acacia disparrima	Hickory Wattle		Y – P
Fabaceae - Mimosoideae	Acacia melanoxylon	Blackwood		Y – P
Flagellariaceae	Flagellaria indica	Whip vine		N
Lauraceae	Cinnamomum camphora	Camphor laurel	Exotic	N
Lauraceae	Cryptocarya glaucescens	Jackwood		Y-S
Lauraceae	Neolitsea dealbata	White Bolly Gum		Y – P
Lomandraceae	Lomandra longifolia	Spiny-headed Mat Rush		Y – P
Luzuriagaceae	Geitonoplesium cymosum	Scrambling lily		N
Malvaceae	Hibiscus heterophyllus subsp. heterophyllus	Native Rosella		Y – P
Malvaceae	Sida rhombifolia	Paddy's Lucerne	Exotic	N
Meliaceae	Melia azedarach	White Cedar		Y – P
Meliaceae	Synoum glandulosum	Scentless Rosewood		Y – S
Menispermaceae	Stephania japonica var. discolor	Snake vine		N
Monimiaceae	Wilkiea huegeliana	Veiny Wilkiea		N
Moraceae	Ficus fraseri	Sandpaper Fig		N
Moraceae	Ficus rubiginosa	Rock Fig		N
Moraceae	Ficus superba	Deciduous Fig		N
Moraceae	Maclura cochinchinensis	Cockspur		N
Myrtaceae	Archirhodomyrtus beckleri	Rose Myrtle		Y – S
Myrtaceae	Corymbia intermedia	Pink Bloodwood		Y – P
Myrtaceae	Eucalyptus acmenoides	White Mahogany		Y – P
Myrtaceae	Eucalyptus carnea	Thick-leaved Mahogany		Y – P
Myrtaceae	Eucalyptus grandis	Flooded Gum		Y – P
Myrtaceae	Eucalyptus microcorys	Tallowwood		Y – P
Myrtaceae	Eucalyptus saligna	Sydney Blue Gum		Y – P
Myrtaceae	Eucalyptus siderophloia	Grey Ironbark		Y – P
Myrtaceae	Lophostemon confertus	Brushbox		Y – P
Myrtaceae	Pilidiostigma glabrum	Plum Myrtle		Y – S

Family	Botanical name	Common Name	Status*	Suitable for rehabilitation#
Myrtaceae	Rhodamnia rubescens	Scrub Turpentine		Y – S
Myrtaceae	Syncarpia glomulifera	Turpentine		Y – P
Myrtaceae	Syzygium moorei	Durobby	V1; ROTAP 2VCi; Locally significant	N
Ochnaceae	Ochna serrulata	Ochna	Exotic	Ν
Oleaceae	Ligustrum lucidum	Large Leaved Privet	Exotic	N
Passifloraceae	Passiflora suberosa	Corky Passion Flower	Exotic	N
Passifloraceae	Passiflora subpeltata	White Passionflower	Exotic	Ν
Pittosporaceae	Pittosporum revolutum	Hairy Pittosporum		Y – P
Poaceae	Andropogon virginicus	Whisky Grass	Exotic	N
Poaceae	Chloris gayana	Rhodes Grass	Exotic	N
Poaceae	Eleusine indica	Crowsfoot Grass	Exotic	N
Poaceae	Imperata cylindrica	Blady Grass		Y – P
Poaceae	Melinis minutiflora	Molasses grass	Exotic	N
Poaceae	Melinis repens	Red natal Grass	Exotic	N
Poaceae	Oplismenus aemulus	Basket grass		N
Poaceae	Ottochloa gracillima	Ottochloa		N
Poaceae	Panicum maximum	Guinea Grass		N
Poaceae	Paspalum mandiocanum	Broad-leaved Paspalum	Exotic	N
Poaceae	Paspalum urvillei	Vasey Grass	Exotic	N
Poaceae	Setaria palmifolia	Palm Grass	Exotic	N
Rhamnaceae	Alphitonia petriei	White Ash	Locally significant	Y – P
Rubiaceae	Coffea arabica	Coffee		N
Rubiaceae	Morinda jasminoides	Morinda		N
Rubiaceae	Psychotria loniceroides	Hairy psychotria		N
Rutaceae	Flindersia schottiana	Cudgerie		Y – S
Rutaceae	Zieria smithii	Sandfly zieria		N
Sapindaceae	Cupaniopsis newmanii	Long-leaved tuckeroo	ROTAP 2RC- ³ ; Locally significant	Ν
Sapindaceae	Diploglottis australis	Native Tamarind		Y – S
Sapindaceae	Guioa semiglauca	Guioa		Y – P
Sapindaceae	Jagera pseudorhus	Foambark		Y – P
Smilacaceae	Smilax australis	Prickly smilax		N
Smilacaceae	Smilax glyciphylla	Sweet Sarsaparilla		N
Solanaceae	Solanum mauritianum	Wild tobacco bush	Exotic	N
Solanaceae	Solanum nigrum	Black-berry Nightshade	Exotic	N

Family	Botanical name	Common Name	Status*	Suitable for rehabilitation#
Tiliaceae	Triumfetta rhomboidea	Chinese Bur	Exotic; naturalised	Ν
Verbenacea	Lantana camara	Lantana	Exotic	Ν
Vitaceae	Cissus hypoglauca	Five-leaf water vine		N
Xanthorrhoea	Xanthorrhoea johnsonii			Ν
Zingiberaceae	Alpinia caerulea	Native ginger		Ν

* V = vulnerable, E = endangered; where:

1 Threatened Species Conservation Act 1995

2 Environment Protection and Biodiversity Conservation Act 1999

ROTAP – listed as rare or threatened in Briggs and Leigh (1995).

Locally significant – as defined in Tweed Vegetation Management Strategy (Kingston et al, 2004).

#: Y = Yes/N= No, species is suitable/not suitable for rehabilitation;

P = Pioneer species suitable for initial stage of rehabilitation;

S = Species suitable for supplementary planting, once pioneers have established.

Additional species suitable for rehabilitation but not previously recorded at site are listed in Table 8.

Family	Botanical name	Common Name	Status*	Suitable for rehabilitation
Elaeocarpaceae	Elaeocarpus obovatus	Hard Quandong		Y – P
Euphorbiaceae	Homalanthus populifolius	Bleeding Heart		Y – P
Euphorbiaceae	Macaranga tanarius	Macaranga		Y – P
Fabaceae – Mimosoideae	Acacia aulacocarpa	Brush Ironbark Wattle		Y – P
Fabaceae – Mimosoideae	Acacia concurrens	Curracabah		Y – P
Fabaceae – Mimosoideae	Acacia fimbriata	Fringed Wattle		Y – P
Fabaceae – Mimosoideae	Acacia floribunda	White Sally		Y – P
Fabaceae – Mimosoideae	Acacia irrorata	Green Wattle		Y – P
Fabaceae – Mimosoideae	Acacia leiocalyx	Black Wattle		Y – P
Fabaceae – Mimosoideae	Acacia longissima	Narrow-leaf Wattle		Y – P
Myrtaceae	Syzygium crebrinerve	Purple Cherry		Y-S
Phyllanthaceae	Glochidion ferdinandii	Cheese Tree		Y – P
Phyllanthaceae	Glochidion sumatranum	Umbrella Cheese Tree		Y – P
Poaceae	Themeda triandra	Kangaroo Grass		Y – P
Rhamnaceae	Alphitonia excelsa	Red Ash		Y – P
Sterculiaceae	Commersonia bartramia	Brown Kurrajong		Y – P
Urticaceae	Pipturus argenteus	Native Mulberry		Y – P

Table 8 Additional species suitable for rehabilitation

* V = vulnerable, E = endangered; where:

- 1 Threatened Species Conservation Act 1995
- 2 Environment Protection and Biodiversity Conservation Act 1999

ROTAP – listed as rare or threatened in Briggs and Leigh (1995).

Locally significant - as defined in Tweed Vegetation Management Strategy (Kingston et al, 2004).

- #: Y = Yes/N= No, species is suitable/not suitable for rehabilitation;
 - P = Pioneer species suitable for initial stage of rehabilitation;
 - S = Species suitable for supplementary planting, once pioneers have established.

Oustomer Service | 1300 292 872 | (02) 6670 2400

tsc@tweed.nsw.gov.au www.tweed.nsw.gov.au

Fax (02) 6670 2429 FOBox 816 Murwillumbah NSW 2484