PART C - RESIDENTIAL FLAT BUILDINGS AND SHOP-TOP HOUSING
Table of Contents

PART C - RESIDENTIAL FLAT BUILDINGS AND SHOP-TOP HOUSING ... 1

CHAPTER 1 – BUILDING TYPES .. 4

- Residential Flat Buildings .. 4
- Small Residential Flat Building .. 4
- Suitable locations for Small Residential Flat Buildings ... 5
- Block Edge Residential Flat Building .. 10
- Suitable locations for Block Edge Residential Flat Buildings .. 10
- Shop-top Residential Buildings ... 12
- Suitable Locations for Shop-top .. 12

CHAPTER 2 SITE AND BUILDING DESIGN CONTROLS .. 16

- Introduction .. 16
- DESIGN CONTROL 1- Public Domain Amenity .. 17
- Streetscape .. 17
- Public Views and Vistas .. 18
- DESIGN CONTROL 2 – Site Configuration ... 19
- Deep Soil Zones .. 19
- Impermeable Site Area .. 22
- External Living Area .. 23
- Above Ground External Living Spaces, Balconies and Terraces .. 25
- Communal Open Space ... 26
- Landscaping ... 27
- Planting on Structures ... 28
- Topography, Cut and Fill ... 29
- DESIGN CONTROL 3 – Setbacks ... 31
- Front Setbacks (Building Lines) .. 31
- Side Setbacks ... 33
- Rear Setbacks .. 35
- DESIGN CONTROL 4 - Carparking and Access .. 37
- Carparking Generally ... 37
- Basement Carparking .. 38
- Garages and Carports ... 39
- DESIGN CONTROL 5 – Building Footprint and Attics, Orientation and Separation ... 40
- Building Footprint and Attics ... 40
- Building Orientation ... 41
- Building Separation .. 43
- DESIGN CONTROL 6 – Height .. 44
- Building Height ... 44
- Ceiling Height ... 45
- DESIGN CONTROL 7 – Building Amenity ... 47
- Sunlight Access ... 47
- Visual Privacy .. 48
- Acoustic Privacy .. 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Section A1 - Residential and Tourist Code</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part C – Residential Flat Buildings and Shop-top Housing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>View Sharing</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Natural Ventilation</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>DESIGN CONTROL 8 – Internal Building Configuration</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Use</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Dwelling Layout and Design</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Storage</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Internal Circulation</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>DESIGN CONTROL 9 - External building elements</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Fences and Walls; Front, Side and Rear</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Side and Rear Fences</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Roofs, Dormers and Skylights</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Elevations Visible from the Public Domain</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Corner Building Elevations</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Awnings, Canopies, Pergolas, Storm Blinds, Sails and Signage</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Minor Elements</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>DESIGN CONTROL 10 – Building Performance</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Energy Efficiency</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Waste Management</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Water Conservation</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Design Control 11 – Floor Space Ratio (FSR)</td>
<td>66</td>
</tr>
</tbody>
</table>
CHAPTER 1 – BUILDING TYPES

Residential Flat Buildings

Residential Flat Buildings are buildings with three or more dwellings and 3 storeys. In exceptional circumstances such as where a site has extreme topography a greater number of storeys may be permissible. The residential flat building types identified in this Part are designed to suit three scenarios; small sites, large sites and sites within commercial centres.

Residential Flat Buildings provide more compact forms of housing which:
- provide housing choice,
- provide for more people to live close to services and amenity,
- can enliven areas such as town and village centres,
- can support local services and commercial operations such as shops, entertainment facilities and public transport,
- can provide residential densities that support economic growth and employment.

Residential Flat Buildings are an important component in supporting vibrant and economically viable local centres and to help reduce car dependency. The location and type of Residential Flat Buildings needs to be carefully considered to ensure they support the physical vision for the future character of the area and that this is based on recognizing and protecting the present character and environmental context.

Given the larger scale and site coverage of Residential Flat Buildings, it is important that the design of the building supports the character of the area and the street. Residential flat buildings must be of a high quality design.

Small Residential Flat Building

Small Residential Flat buildings usually contain six dwellings; two per floor; however they may contain a variation to this configuration. Carparking is generally underground and the buildings circulation spaces are located centrally within the building providing all dwellings with three external sides.

This building type is designed for a local area where the dominant building type will eventually be Residential Flat Buildings. The controls are designed to ensure that each building works together across the block to ensure that sites have an equitable level of privacy, sunlight and outlook.

Each building should also contribute to creating a quality streetscape by ensuring landscaping, fencing, driveways, setbacks and the design of elevations have common urban design characteristics.

A small Residential Flat Building may have the proportion and scale of a large detached dwelling and be freestanding in a landscape setting. This building type can in some cases also be derived from an existing large house, internally subdivided into separate apartments.

Small Residential Flat Building developments have building and landscape design elements of a residential scale and character. They are suitable for steep changes in level as they have a small footprint and can more easily step down the site and maintain the first floor connection with the ground level.

Small Residential Flat Buildings have landscaped front and rear setbacks.

Objectives

- To provide more compact housing types within a small scale building form.
- To provide more housing choices.
- To create an urban building form and strong built edge along the street.
- To more efficiently use land in proximity to services and centres.
- To provide a residential flat building type for steep sites.
• To provide greater residential densities.
Suitable locations for Small Residential Flat Buildings
This building type is suitable for allotments originally designed for a single dwelling but only in areas identified by Council for higher density residential development.
They can also be used on sloping sites where the building may need to be separated into two or more buildings in order to allow for a better relationship with the topography and to avoid the appearance of a 4, 5 or more storey building, when viewed from the low side of the site.

Controls
a. The main pedestrian entry to the building is to be provided, facing the street, accessible directly from the street and clearly visible from the street.
b. Ground level dwellings with a street frontage are to have a pedestrian access from the street.
c. The internal space of the ground floor is to have pedestrian connection to ground level external spaces.
d. Unusable ground level spaces are to be avoided by ensuring that all ground level external spaces are either part of a gardens or an external living area for ground level dwellings unless designed for a specific communal function such as; communal utility areas, communal circulation spaces or communal recreational spaces.
e. Deep soil areas are to be provided at the rear and the front of sites in accordance with this Part.
f. Small Residential Flat Buildings are to be designed in accordance with the Site and Building Design controls found in this Part.
g. Front fencing and landscaping is to be provided within the front setback and is to enhance the residential character of the street and the building.

Illustrative block layout for the Small Residential Flat Building
Indicative layouts for a Small Residential Flat Building with two dwellings per floor.
At the block and precinct scale the small apartment building type results in a high degree of landscaping and open space.

A small apartment building type can have the proportions and scale of a large house (Image from the Residential Flat Design Code).
Illustrative plan of a small residential flat building type on a steep site.
Section

An illustrative section of a small residential flat building type on a steep site.

Illustrative elevation and street plan of the small residential flat building type (Image from the Residential Flat Design Code).
Block Edge Residential Flat Building

These buildings are characterised by being large developments either as a result of amalgamating two or more lots or being located on larger scaled lots. These buildings are located in areas zoned for higher density residential development generally only within proximity to centres where the built form is relatively urban. This is a flexible building type and can easily incorporate a mix of uses within the same building, generally with retail or commercial on the ground floor. Block edge apartments can be limited in height as a walk-up or have lifts. They can also be street-edge aligned or set back within a landscape setting. These buildings types can have a variety of different layouts depending on the site size, topography and street character. The main issues for Block Edge Residential Flat Buildings are to ensure the building mass is broken down along the street to reduce the bulk and scale of the building to ensure that ground floor dwellings address the street and are able to be accessed by pedestrians from the street.

Suitable locations for Block Edge Residential Flat Buildings

Locations generally include:
- on larger development site generally over 2000m2,
- where a perimeter block urban form is intended,
- where a vertical rhythm is desired to reinforce the street,
- in an urban precincts in walking proximity to centres.

Objectives

- To ensure larger developments are well proportioned and scaled.
- To provide more compact housing in proximity to centres.
- To create an urban building form and strong built edge along the street.
- To define the street space.

Controls

- Maximum building and elevation length along the street is 35m.
- Minimum lot size 2000m2.
- The buildings street elevation is to be articulated to have a base, middle and top.
- Front doors, windows and entry areas are to face the street.
- Ground level dwellings with a street frontage are to have a pedestrian access from the street.
- Front fencing and landscaping is to be provided within the front setback and is to enhance the character of the street and the building.
- Car parking areas are located to the rear or the centre of lots away from the street front or underground.
- Block Edge Residential Flat Buildings must comply with the Controls found in this Part.
Illustration of a block edge flat building with two street frontages.

Illustrative block layout showing how the larger block edge developments define the street edge and relate to one another and create vegetation corridors to the rear of sites.
Shop-top Residential Buildings

Shop-top describes a building type with residential dwellings above commercial, in most cases retail space. Generally this building type occurs on land zoned for commercial purposes. Shop-top accommodation can be either:

- Shop-top housing; 1 or more dwellings over two levels associated with a ground level commercial space or
- Shop-top Residential Flat Building; 4 or more dwellings and 3 or more storeys associated with a ground level commercial space.

Shop-top provides accommodation in proximity to the amenity, conveniences and activities offered by centres such as entertainment and dining and social benefits such as public transport and community services.

Shop-top comprises of either two or three storeys with the commercial component occupying the whole of the ground level of the building and in some cases the first level as well. Apartment layouts on the first level can be designed to allow for home/office or future commercial uses. These buildings are characterised by being built to the street alignment and the side boundaries and are oriented to the street front and the rear of the lot. Their elevations have a high level of urban design consistency between all buildings along the street and they strongly define a built edge to the street space.

The challenge for shop-top is to ensure that the residential component of the building does not preclude quality commercial space nor stifle the growth and development of the place as a commercial and civic centre. The primary and overriding purpose of land within centres is to provide for the current employment, commercial, entertainment and civic needs of the community therefore development is to safeguard the flexibility and growth opportunities of these uses. As such residential uses are of secondary importance to the commercial component of this building type and are to result in economically viable commercial spaces for the occupants and future owners in the immediate and longer term.

Objectives

- To provide a building form that complements commercial uses.
- To provide more compact housing in proximity to centres.
- To create an urban building form and strong built edge along the street.
- To define the street space.
- To provide quality commercial buildings.

Suitable Locations for Shop-top

Shop-top is to be located in centres, generally along main streets.

Shop-top may not be appropriate for locations in proximity to civic, entertainment or community uses that generate noise, light spill or a high degree of activity during the day or the night.

Controls

a. Shop-top development is to have a street elevation consistent with other buildings in the street in terms of height and vertical and horizontal proportions. The buildings street elevation is to be designed to give emphasis to enclosing the street space along the street boundary.

b. Colonnades are generally not acceptable along main streets unless there is a historic precedent of colonnades along the street.

c. Uses on ground level are to be commercial (generally retail). Circulation spaces used to access upper level dwellings may occupy up to 15% of the lot frontage.

d. Uses on the first floor can be either residential or commercial.

e. The internal space of the ground floor of the development is to be at the ground level of the street.

f. Basement car parking is to be fully underground.

g. Footpath trading must comply with the procedures and guidelines contained in the Tweed Footpath Trading Policy.

h. The design and layout of commercial spaces is to demonstrate:
- the intended type of commercial uses proposed and the suitability of the building design to accommodate these uses,
- the immediate and long term economic feasibility of proposed commercial space,
- the way in which the proposed commercial space complements and extends the quality and attractiveness of the existing centre.

Two storey Shop-top housing and three storey Shop-top Residential Flat Buildings.
Illustrative site layout Shop-top Residential Flat Building with carparking on the ground level.
Illustrative site layout shop-top housing with underground carparking. The residential component is set back to provide greater separation from noise and other environmental impacts.
CHAPTER 2 SITE AND BUILDING DESIGN CONTROLS

Introduction

This section of the document provides an explanation of the key controls used to define aspects of development to be achieved when preparing a Development Application for a Residential Flat Building or a Shop-top Development. The explanations associated with each Site and Building Design Control are to assist the designer to understand the intent of each control and to ensure there is consistency in the application of the controls across all sites in the Tweed Shire.

The Site and Building Design Controls are:

- Design Control 1 Public Domain Amenity
- Design Control 2 Site Configuration
- Design Control 3 Setbacks
- Design Control 4 Carparking and Access
- Design Control 5 Building Footprint and Attics, Orientation and Separation
- Design Control 6 Height
- Design Control 7 Building Amenity
- Design Control 8 Internal Building Configuration
- Design Control 9 External Building Elements
- Design Control 10 Building Performance
- Design Control 11 Floor Space Ratio (FSR)
DESIGN CONTROL 1- Public Domain Amenity

Public domain relates to those aspects of the urban environment which are either owned publicly or accessible to and enjoyed by the public. For the purposes of this DCP this includes streetscape, and public views and vistas. New developments can help to enhance amenity within the public domain. In established residential areas it is important to recognise and respect the existing qualities and unique characteristics of the place. In locations where the character is either not well established or needs improvement new development can contribute to strengthening and creating character.

Streetscape

Streetscape refers to the spatial arrangement, extent and appearance of elements within a street, which includes some elements on private properties adjoining the street. Streetscape design is concerned with ensuring there is consistency in built and landscape form along streets on private sites. Streetscape controls seek to ensure that dwellings and gardens relate well to each other and to the landscape setting along the street. The primary elements that create streetscape character are:

- the relationship of street to the topography of the land on either side of the street,
- the width, layout, landscaping and materials of the street, footpaths and front gardens,
- buildings, building setbacks, building height,
- relationship of buildings to the topography and to other buildings in the streetscape.

The aspects of a development that help to create quality streetscapes, when well considered and designed include:

- front and side boundary landscaping including boundary fences and walls,
- access and driveway design; widths, materials and location,
- the building’s size and shape as seen from the street, front elevation and roof form.

Objectives

- To ensure the existing landform and topographic setting along the street is respected.
- To ensure new development is compatible with the positive characteristics of the existing streetscape.
- To ensure new development enhances the character of the existing streetscape.
- To encourage dwellings to be well designed.
- To ensure streets provide a high level of pedestrian amenity, access and safety.
- To ensure garages do not dominate the street.

Controls

a. Site design, building setbacks and the location and height of level changes are to consider the existing topographic setting of other buildings and sites along the street, particularly those that are older and more established.

b. The design of the front deep soil zone and boundary interface to the public domain is to complement or enhance streetscape character by:
 - providing for landscaping; lawn, trees or shrubs characteristic with existing properties or of such design as to enhance the quality and appearance of the dwelling and surrounding area,
 - reflecting the character and height of fences and walls along the street, or of such design as to enhance the quality and appearance of the dwelling and surrounding area,
 - reflecting the character and layout of established front gardens of other allotments in the street, particularly older and well established garden landscapes,
 - retaining, protecting or replacing existing vegetation and mature trees,

c. Carports and garages visible from the public street are to;
 - be compatible with the building design, including roofs,
- be setback behind the dwellings front elevation.

a. Minimise driveways and hardstand areas to increase the area for deep soil zones and landscaping and to reduce the visual impact of driveways and hard surfaces from the street.

e. Facades visible from the public domain are to be well designed by:
 - having important elements such as front doors and building entry areas prominent in the building facade and clearly identifiable from the street,
 - coordinating and integrating building services, such as drainage pipes, with overall facade design,
 - integrating the design of architectural features, including stairs and ramps, and garage/carport entries with the overall facade design, and by locating car parking structures on secondary streets where possible,
 - ensuring corner buildings have attractive facades which address both streets frontages, including the careful placement and sizing of windows,
 - ensuring entrance porticos are single storey.

Public Views and Vistas
Public views and vistas are enjoyed from public places such as foreshores, parks and along streets. Views are generally contained by buildings in the streetscape, such as view corridors down a residential street. Vistas are long wide views, generally across a locality. Vistas are generally defined by ridgelines and valleys.

Objectives
- To ensure existing public views and vistas particularly those of important natural features such as ridgelines, water or bushland are retained, in so far as it is practical to do so.
- To ensure public view corridors, particularly those down street and between buildings, are not unnecessarily reduced or obliterated.
- To ensure public views of important public places or buildings are protected.

Controls
a. The location and height of new developments is not to significantly diminish the public views to heritage items, dominant landmarks or public buildings from public places.
b. The location and height of new development is to be designed so that it does not unnecessarily or unreasonably obscure public district views of major natural features such as the water, ridgelines or bushland.
c. The location and height of new development is to be designed so that it does not unnecessarily or unreasonably obscure public view corridors, for example, down a street.
d. The location and height of new development is to be designed to minimise the impact on public views or view corridors between buildings.
DESIGN CONTROL 2 – Site Configuration

Site configuration deals with the way in which the intended uses are accommodated to suit the particular site and local context.

Site configuration includes:
- Development Lots,
- Deep Soil Zones,
- Impermeable Site Area,
- External Living Areas,
- Communal Open Space,
- Landscaping,
- Planting on Structures and,
- Topography, Cut and Fill.

Deep Soil Zones

Deep soil zones are areas of soil suitable for the growth of vegetation and mature trees. Deep soil zones may be landscaped but are not covered with hard impervious surfaces such as concrete, asphalt or pavers, nor are they contained within or located over a carpark. Most sites have two deep soil zones, one located to the rear and one to the front of the lot. The rear deep soil zone is designed to accommodate at least one mature tree and vegetation. The planting of endemic species is encouraged.

Deep soil zones have significant environmental benefits including:
- promoting healthy growth of large trees and protecting existing mature trees,
- to retain the natural hydrological structure of the area,
- assisting with management of water quality and mitigate global warming,
- improving the amenity of developments through landscaping that improves microclimatic conditions,
- assisting in the creation of vegetation corridors within and through the locality.

Calculation rules:
- Two dimensions are used to measure deep soil zones; depth and width.
- Depth: Depth is measured perpendicular to the boundary (front or rear) towards the centre of the site to the edge of the building footprint.
- Width: width is measured as a percentage of the length of the boundary (front or rear).

Objectives
- To ensure that land retains its ability to permeate water.
- To ensure that each building lot has a deep soil zone of adequate area and dimension.
- To retain and enhance fauna and flora corridors throughout suburban areas.
- To provide space for mature tree growth and vegetation.
- To retain existing mature vegetation.

Controls
a. Deep Soil Zones must be provided for all new developments and existing development, except on non urban land with site areas greater than 5000m2 and development with ground level commercial floor space.
b. All sites are to provide two Deep Soil Zones, one to the rear and one to the front of the property.
c. Rear Deep Soil Zones are to have minimum width of 8m or 30% of the average width of the site whichever is the greater and a minimum depth of 18% of the length of the site up to 8m but not less than 4m. Greater than 8m may be provided if desirable.
d. Rear Deep Soil Zones are to have soft landscaping; refer to Landscaping Section.
e. Front Deep Soil Zones are to be the width of the site boundary minus the driveway width and the pathway width by the front setback depth.
f. Front Deep Soil Zone areas are to have soft landscaping, vegetation and at least one tree.
g. Deep Soil Zones cannot be covered by impervious surfaces such as concrete, terraces, outbuildings or other structures.
h. Deep Soil Zones cannot be located on structures such as car parks or in planter boxes.
i. The Deep Soil Zone is to be included in the total permeable area for the allotment.

Design Guidelines:
It is preferable that deep soil zones on the rear boundary extend along the full length of the boundary as this is generally where the opportunity exists to create or expand on a vegetation corridor between properties and is often an area where established trees and vegetation exists already.

Deep soils zones fit neatly around the building without obstruction either above or below by built elements such as carpark ramps, impervious surfaces or terraces.
PREFERABLE TO BE LOCATED TO THE REAR BOUNDARY
OF AND TO THE FULL WIDTH OF THE REAR BOUNDARY

WIDTH DSZ MIN. 8M

Preferrable max. area to rear of dwelling

DEPTH MIN. 18% OF THE LENGTH OF THE DSZ & LARGER WHERE LESS THAN 20M FROM THE REAR BOUNDARY

MINIMUM REAR DSZ AREA

Backyard

MINIMUM REAR DSZ AREA

Garage

Backyard

DSZ WIDTH - FRONT BOUNDARY LENGTH MINIMUM THE DRIVEWAY AND PATHWAY

Front and rear deep soil zone diagram showing a site with underground parking (left image) and on grade parking (right image).
Impermeable Site Area
The impermeable site area is the total area of impervious surfaces within an allotment following completion of the development. Excessive impermeable areas on a lot can increase the volume of stormwater discharged off the site as it reduces the land's capability to infiltrate water in storm events.

Objectives
- To promote residential development that is sympathetic with the existing topography, water cycle and amenity of the site and neighbourhood.
- To retain the land's ability to infiltrate stormwater.

Controls
a. An allotment's runoff shall be dispersed onto grassed, landscaped or infiltration areas, of the allotment, unless this is inconsistent with the geotechnical stability of the site or adjacent/downstream land.
b. The concentration, collection and piping of runoff to the street gutter or underground stormwater system shall be minimised unless this is inconsistent with the geotechnical stability of the site or adjacent/downstream land.
c. Rainwater shall be collected in tanks and reused.
d. Site surface depressions in landscaping are to be utilised for on-site detention and infiltration unless this is inconsistent with the geotechnical stability of the site or adjacent/downstream land.
e. Runoff is to be minimised, delayed in its passage and where possible accommodated within the landscape of the development site unless this is inconsistent with the geotechnical stability of the site or adjacent/downstream land.
f. A schedule of the breakdown/calculation of impermeable site area must be submitted with the development application.
g. The maximum areas for impervious surfaces are:
 - 70% of the allotment - On lot sizes less than 500m2.
 - 65% of the allotment - On lot sizes between 500m2 and 750m2 inclusive.
 - 60% of the allotment - On lot sizes greater than 750m2.

<table>
<thead>
<tr>
<th>Surface type</th>
<th>Material</th>
<th>Impermeable factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof surfaces</td>
<td>Metal, tile, slate and other impermeable materials</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>"Green roofs"/roof gardens</td>
<td>0.5</td>
</tr>
<tr>
<td>Ground surfaces</td>
<td>Concrete/paving (non-porous)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Gravel</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Porous paving</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Grid pavers</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Seep Soil Zones</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Landscaping/vegetation</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Planting on structures</td>
<td>1.0</td>
</tr>
<tr>
<td>Decks</td>
<td>Concrete/paving (non-porous)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Timber (over natural soil)</td>
<td>0.50</td>
</tr>
<tr>
<td>Swimming pools</td>
<td>All types</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 1 – Impermeable surface factors
Calculation Rules
The impermeable site area is calculated by adding up the area (in square metres) for each different type of ground surface that does not allow natural infiltration of rainwater. As some types of surfaces are only partially impermeable, it is necessary to multiply the area of the surface with an appropriate ‘impermeability factor’ as indicated.

External Living Area
External living area refers to an external space that extends the living and recreation space of a dwelling to provide private outdoor recreational and relaxation space. These spaces generally take the form of courtyards, decks, terraces and balconies, they can be paved or decked and may be covered. External living areas may be located either on ground or above ground. Small balconies and similar structures from bedrooms are not considered as external living areas.

External living areas should not adversely impact on the amenity of neighbours. The location of the external living area needs to be carefully considered with regard to maintaining privacy. The location of external living areas can assist in controlling sun access by promoting daylight access in winter and shade in summer.

Elevated external living areas should be designed to avoid facing the side boundaries, as this can easily lead to privacy problems with neighbouring properties.

Objectives
- To enhance the amenity of internal living spaces.
- To provide an external relaxation and recreation space.

Controls
a. External living areas are best located adjacent to the internal living (dining rooms, living room, or lounge room) areas so as to extend the overall living space.

b. External living areas should be suitably screened to achieve visual privacy if located less than 4m from a side boundary.

c. External living areas are to be no closer to the side boundaries than 900mm.

d. External living areas are to be designed to ensure water does not enter the dwelling.

e. External living areas should be oriented to north where possible.
Diagram of an External Living Area to the rear of the site provides direct connection between the internal space of the dwelling and the garden or Deep Soil Area. Privacy screening may be required to the sides of the space. Ground level external living areas are to be located so as to retain mature trees, mature vegetation and significant landscape features.

Illustrative plan of an RFB. Ground level spaces are to be designed to be useable and part of the private open space for ground level dwellings.
Illustrative plan and section of a Residential Flat Building. Landscaped private rear gardens and courtyards extend the liveable space of the dwelling and provide a variety of paved and soft landscaped areas. Utility functions such as clothes drying can be provided as well as deep soil zones.

Above Ground External Living Spaces, Balconies and Terraces

Balconies and terraces enhance the dwelling’s amenity. They provide private open space, extend the living spaces of the dwelling and capitalise on the temperate climate. Balconies and terraces are also important architectural elements, contributing to the form and articulation of buildings. Small balconies and terraces located off minor rooms such as bedrooms or studies can help open the room to the outside.

Objectives

- To provide outdoor living spaces.
- To improve the architectural form and detail of buildings.
- To contribute to the safety and liveliness of the street by allowing for casual surveillance.

Controls

a. Above ground external living areas are to have a minimum depth of 2.5m and a minimum area of 10sq.m.

b. Balconies and terraces off minor rooms have no minimum depth or width.

c. Above ground external living areas are to be;
 - located adjacent to the main living areas, such as living room, dining room, kitchen to extend the dwelling livingspace,
 - sufficiently large and well proportioned to be functional and promote indoor/outdoor living to fit a dining table and our chairs.
Design Guidelines

- Detail and design balconies or terraces in response to the local climate and context, thereby increasing their usefulness. This may be achieved by:
 - utilising sun screens, shutters and operable walls to control light and wind,
 - providing balconies or terraces with operable screens. Juliet balconies or operable walls/sliding doors with a balustrade may be preferable in special locations where noise or high winds prohibit other solutions,
 - choosing cantilevered balconies, partially cantilevered balconies and/or recessed balconies in response to daylight, wind, acoustic & visual privacy,
 - design balustrades to allow views and casual surveillance of the street while providing for safety and visual privacy. Design considerations may include:
 - detailing balustrades using a proportion of solid to transparent materials to address site lines from the street, public domain or adjacent development (full glass balustrades do not provide privacy for the balcony or the dwelling interior),
 - detailing balustrades and providing screening from the public, for example, for a person seated looking at a view, for clothes drying areas, bicycle storage and air conditioning units.
- Coordinate and integrate building services, such as drainage pipes, within the overall façade and balcony design.
- Secondary balconies (including Juliet balconies or operable walls with balustrades) may be provided to increase residential amenity and dwelling choices, in larger dwellings, adjacent to bedrooms.
- Screen balconies or terraces off laundries or bathrooms from the public domain.

Communal Open Space

Communal open space is an area within the development for the use of all residents. This can include swimming pools, barbeque areas, landscaped relaxation areas, clothes drying areas or a gym. Generally only larger development with more than 6 dwellings will have communal open space. Communal open space is not to be made up of unusable spaces left over from building siting but rather to be designed to provide a useable and attractive space.

Analysis of the usability and appropriateness of the communal open space design, location and size relative to the number of persons it services is a requirement for any development application.

Objectives

- To provide a space where residents can participate in shared activities.
- To enhance the lifestyle of residents.
- To be functional and attractive.

Controls

a. Communal open space must be provided for with any developments of more than 10 dwellings to provide recreational or relaxation uses for residents.

b. Communal open space is not to be located such that solar access, privacy and outlook to dwellings are reduced.

c. The design of communal open space must demonstrate how it achieves specific functions that enhance the livability and residential amenity of the development and how it will serve the needs and number of people within the development.

d. The location and design of communal open space must not compromise achieving the minimum separation distances and minimum areas for external living areas.

e. Communal open space is to be designed such that its size and dimensions allow for particular uses.
Landscaping

Landscaping is concerned with the planning, design, construction and maintenance of all deep soil zones, external living areas, garden, surface vehicle access and parking areas and utility areas including both soft and hard landscape areas.

Quality landscaping retains significant landscape natural features and mature trees. It also ensures that landscaping and buildings are considered together to result in greater aesthetic quality and amenity for occupants. As such landscape areas should not be generated by left-over spaces resulting from building siting.

Landscape design builds on the site’s natural and cultural features to contribute to a development’s positive relationship to its context and site. Landscape design should optimise usability, privacy and social opportunity and respect for neighbours’ amenity.

Landscape design should consider usability, privacy and opportunities for social and recreation activities. Neighbours’ amenity should also be respected. Landscaping also has an important role to play in improving environmental conditions such as storm water and rainwater absorption, habitat for native animals and plants, reducing bushfire risk, and helping to regulate the amenity of a development through such things as sunshading using pergolas and tree plantings.

Objectives

- To enhance the appearance and amenity of development.
- To enhance the character of the locality and the streetscape.
- To retain existing important landscape features.
- To provide privacy between adjoining dwellings and private open space.
- To assist in the percolation of rainwater and reduction in stormwater runoff.
- To improve microclimatic conditions on sites and the solar performance of dwellings.
- To contribute to improving urban air quality.
- To provide fauna and flora habitat.
- To assist in the protection of urban bushland.

Controls

a. Retain existing landscape elements on sites such as natural rock outcrops, watercourses, dune vegetation, indigenous vegetation and mature trees.
b. On lots adjoining bushland, protect and retain indigenous native vegetation and use native indigenous plant species for a distance of 10m from any lot boundaries adjoining bushland.
c. Locate and design the building footprint to enable the retention of existing trees.
d. Buildings are not to be sited under the drip line of an existing tree.
e. Provide useful outdoor spaces for liveability by coordinating the design of external living areas, driveways, parking areas, communal drying areas, swimming pools, utility areas, deep soil areas and other landscaped areas with the design of the dwelling.
f. Where the ground floor level of a dwelling is above the finished external ground level reached through a door or doorways, there is to be a physical connection made between these levels. Examples of a physical connection include stairs, terraces, and the like.
g. Provide a landscaped front garden.
h. A pathway with a minimum width of 900mm is to be provided along one side of the dwelling so as to provide pedestrian access from the front garden to the rear yard. This access is not to be blocked by such things as landscaping features, rainwater tanks, hot water heaters and retaining walls. The pathway does not need to be provided on allotments which have rear lane access.
i. Landscape elements in front gardens such as plantings are to be compatible with the scale of development.
j. The front garden is to have at least 1 canopy tree with a minimum mature height of 10 metres.
k. Where the backyard does not have a mature tree at least 15m high, plant a minimum of one large canopy tree in the back yard. The tree is to be capable of a mature height of at least 15m and is to have a spreading canopy.
l. Locate and design landscaping to increase privacy between neighbouring dwellings.

<table>
<thead>
<tr>
<th>Design Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Provide useful outdoor spaces for liveability by coordinating the design of driveways, parking areas, drying areas, swimming pools, utility areas and other private open spaces with the design of the dwelling.</td>
</tr>
<tr>
<td>- Improve the energy and solar efficiency of dwellings and the microclimate of private open spaces. Design solutions include:</td>
</tr>
<tr>
<td>- providing deciduous trees for shading low-angle sun on the east and western sides of a dwelling,</td>
</tr>
<tr>
<td>- providing trees that do not cast a shadow over solar collectors at any time of the year,</td>
</tr>
<tr>
<td>- providing deciduous trees for shading of windows and open space areas in summer,</td>
</tr>
<tr>
<td>- locating evergreen trees away from the building to allow winter sun access,</td>
</tr>
<tr>
<td>- varying heights and species of trees or shrubs to shade walls and windows,</td>
</tr>
<tr>
<td>- locating pergolas on balconies and courtyards to create shaded areas in summer and private areas for outdoor living,</td>
</tr>
<tr>
<td>- locating plants appropriately in relation to their size at maturity.</td>
</tr>
<tr>
<td>- Design landscapes to contribute to water and stormwater efficiency by:</td>
</tr>
<tr>
<td>- using plants with low water demand to reduce mains consumption,</td>
</tr>
<tr>
<td>- using plants with low fertilizer requirements,</td>
</tr>
<tr>
<td>- using plant species that are suitable when near drainage lines and infrastructure.</td>
</tr>
</tbody>
</table>

Planting on Structures

Quality landscape design and open space amenity relies in part on the quality and health of plants. Plants grown on structures are grown in containment with artificial soils, drainage and irrigation. Plants grown in such situations are subject to a range of environmental stresses that affect the health and vigor of the plants, and ultimately their survival.
Planting on structures should be avoided in dwelling houses, dual occupancies, town houses and row housing. Carefully considered planting on structures can occur in larger developments where the ground level site area is restricted such as in Shop-top residential flat buildings.

Objectives

- To contribute to the quality and amenity of communal open space on roof tops, podiums and internal courtyards.
- To encourage the establishment and healthy growth of trees in urban areas.

Controls

a. Planting on structures is not to occur in areas that cannot be easily accessed either from dwelling external living areas or communal areas.

b. Optimise plant growth by:

- providing soil depth, soil volume and soil area appropriate to the size of the plants to be established,
- providing appropriate soil conditions and irrigation methods,
- providing appropriate drainage.

Design Guidelines

- Design planters to support the appropriate soil depth and plant selection by:
 - ensuring planter proportions accommodate the largest volume of soil possible. [minimum soil depths will vary depending on the size of the plant however, soil depths greater than 1.5 metres are unlikely to have any benefits for tree growth],
 - providing square or rectangular planting areas, rather than long narrow linear areas.

 Increase minimum soil depths in accordance with:
 - the mix of plants in a planter for example where trees are planted in association with shrubs, groundcovers and grass
 - the level of landscape management, particularly the frequency of irrigation
 - anchorage requirements of large and medium tree soil type and quality.

- Provide minimum soil depths in accordance with the following:

 - large trees such as figs (16 metres canopy diameter at maturity); minimum soil volume 150 cubic metres, minimum soil depth 1.3 metre, minimum soil area 10 metre x 10 metre area or equivalent.
 - Medium trees (8 metre canopy diameter at maturity); minimum soil volume 35 cubic metres, minimum soil depth 1 metre.
 - Shrubs; minimum soil depth 500-600mm.
 - Ground cover; minimum soil depth 300-450mm.
 -Turf; minimum soil depth 100-300mm.

 - Any subsurface drainage requirements are in addition to the minimum soil depths quoted above.

Topography, Cut and Fill

Tweed Shire has significant and varied topography both along the coastal edge and further inland. The topography gives places their character. It provides for a variety of views and vistas, both local and distant, from public and private domains but also makes developments more prominent, particularly when viewed from the low side. The retention of the existing topography means that buildings in the streetscape retain a consistent relationship to the natural topography. This relationship provides an important visual link between buildings in a streetscape, as well as reducing the impacts of new development on neighbouring lots.
Deep excavations can substantially alter the pattern of subsoil water flow and soil stability which may adversely affect neighbouring properties and the natural environment. Alternatives to slab on ground construction are to be encouraged where it is obvious that due to the gradient and characteristics of the site, major excavation or filling as a result of raft slab construction would be inappropriate.

Objectives

- To retain the existing landform.
- To limit the extent of excavation.
- To moderate the effects of building height and bulk on sloping land.
- To minimise the extent of earth works on residential land and earthworks associated with residential development.
- To ensure that the building design is appropriate for site topographical conditions.

Controls

a. Building siting is to relate to the original form of the land.

b. Alternatives to slab on ground construction are to be encouraged where it is obvious that due to the gradient and characteristics of the site, major excavation or filling as a result of raft slab, construction would be inappropriate. Example of alternative construction includes: Bearer and joist construction; Deepened edge beam; Split level design; Suspended slab design.

c. On sloping sites step buildings or utilise site excavation and suspended floors to accommodate changes in level rather than leveling the site via cut and fill.

d. Dwellings must not be designed to be on a contiguous slab on ground type if the building site has a slope of greater than 10%. Development on such land is to be of pole or pier construction or multiple slabs or the like that minimise the extent of cut and fill.

e. Site excavation / land reforming is to be kept to a minimum required for an appropriately designed site responsive development.

f. The maximum level of cut is 1m and fill is 1m except for areas under control j.

g. Retaining walls maximum 1.2m.

h. Cut areas are to be set back from the boundaries at least 900mm; fill areas are to be setback from the boundary a minimum of 1.5m.

i. Cut and fill batters shall not exceed a slope of 1:2 (v:h) unless geotechnical reports result in Council being satisfied with the site stability. All batters are to be provided with both short term and long term stabilisation to prevent soil erosion.

j. Excavations in excess of one metre within the confines of the building and on driveways may be permitted, to allow for basement garages providing the excavations are adequately retained and drained, in accordance with engineering details.

k. Filled areas are to be located where they will not impact on the privacy of neighbours.

l. Stormwater or surface water runoff shall not be redirected or concentrated onto adjoining properties so as to cause a nuisance and adequate drainage is to be provided to divert water away from batters.

m. The top of any battered cut (or retaining wall) and the toe of any battered fill (or retaining wall) is not to be closer than 900mm to any property boundary, where the overall height at any point exceeds 500mm.

Variations to Cut and Fill Design

m. Variations to the requirements above will be permitted to create a flat yard space not exceeding 15% of the area of the lot for the purposes of outdoor living, recreation, clothes drying, swimming pool and the like.

n. Proposed variations to the controls must demonstrate that the excavation or filling of the site is in harmony with the natural landform/environment and will not adversely affect the adjoining properties.

o. Where a property is burdened by stormwater or water and sewerage mains then Council will generally preclude any excavation or filling within that easement.
DESIGN CONTROL 3 – Setbacks

Setbacks are important as they set the buildings location in relationship to the lot boundaries, the street and neighbouring buildings. Setbacks allow space for landscaping and to achieve privacy between dwellings in residential areas.

Calculation rules:
A setback is the distance between a building and a lot boundary. It is the measurement of the horizontal distance between the property boundary (or other stated boundary) measured at 90 degrees from the boundary and:
- a building wall or load bearing columns used instead of a wall
- the outside face of any balcony, deck or the like or
- the supporting posts of a structure or
- the outer edge of an eaves gutter,
If either the boundary or the structure is irregular then the shortest distance is the setback distance.
Setbacks are measured at 90 degrees to the lot boundary and include any articulation to the buildings elevation as well as including roofed or enclosed external living areas.
This setback is not a minimum or maximum distance from the street but rather the building is to be built along the alignment of the front boundary setback.

Front Setbacks (Building Lines)
The setback from the front boundary establishes the location and alignment of the buildings front elevation.
Front setbacks help create the proportions of the street and contribute to the public domain by unifying streetscape character and the continuity of street elevations. Street setbacks enhance the setting for the building as they provide for landscape areas, entries to the dwelling and deep soil areas.

Objectives
• To establish the desired spatial proportions of the street and define the street edge.
• To enable a transition between public and private space.
• To create a landscape setting for residential buildings.
• To ensure compatibility with other buildings in the street.

Controls
a. In new areas Shop-top Housing and Shop-top Residential Flat Buildings are to be built to the street boundary.

b. In new areas Residential Flat Buildings are to have a street setback of 6m.

c. On corner sites in new and existing areas the setback along the secondary street (the street to which the dwelling has its secondary frontage) is 3m.

d. Where a site has dwellings with frontages to two or more streets, the street setbacks for these frontages are to be considered as front setbacks and there be 6m.

e. In established areas Shop-top Housing and Shop-top Residential Flat Buildings are to be built to the street boundary.

f. In established areas Residential Flat Buildings are to be setback from the street boundary by 6m with a variance of up to plus or minus 1m (ie. between 5m to 7m).

g. Basement garages cannot be located forward of the building footprint.

h. On grade parking must be located a minimum of 6m setback from the buildings front elevation or to the rear of the site.
In situation where there is not a predominant setback line new buildings are to be an average of the setback distances on neighbouring sites with a variation of up to 1m.

Corner buildings may have different setback distances to define the primary and secondary street.
The front setback is allows for landscaping, fencing to enhance the residential quality of the street and provide greater privacy for ground level dwellings.

Side Setbacks

Side setbacks are designed to allow buildings to have the minimal distances between the building and the side boundary.

Minimising side boundary setbacks allows the building to have a wider street and rear building frontage. This gives a greater elevation length for habitable room windows to be oriented to the front and the rear of the lot.

By orienting habitable rooms along the front and rear elevations rather than the side boundaries separation distances for privacy, light and air can more easily be achieved between neighbouring dwellings.

Objectives
- To provide an orientation for windows of ancillary rooms.
- To provide access to the rear of the lot.
- To provide a location for rainwater tanks.
- To facilitate visual and acoustic privacy between neighbouring lots.

Calculation rules

Side setbacks are measured from the allotments side boundary to the outside edge of a building element. Setbacks are measured at 90 degrees to the allotment boundary and include any articulation to the buildings elevation but do not include external living areas.

On lots with north to the side boundary living room windows can face the side boundary if set back.

Controls

a. Shop-top Housing and Shop-top Residential Flat Buildings must have zero side setbacks for at least 5m back from the street boundary.
b. Residential Flat Buildings can have minimum of 1.5m setbacks.

Primary windows of living rooms facing the side boundaries

- Shop-Top Housing with walls containing the primary windows of living rooms facing the side boundaries are to be setback a minimum of 4m from the boundary and be screened.
- Shop top Residential Flat Buildings and Residential Flat buildings with the primary windows of living rooms facing the side boundaries are to be setback a minimum of 6m and meet the distances as set out in the Separation Controls.

Garages and basement parking

- Garages may be located within 450mm of a side boundary.
- Carports may be located adjacent to a side boundary.
- Basement garages are to be set back a minimum of 1.5m from the side boundaries but preferably in line with the building above.
- Driveways may be located adjacent to the side boundaries only where front fences have 60% openness ratio for the first 2m along the boundary adjacent to the driveway to achieve sight lines as set out in AS2890.

Rear Setbacks

Rear setbacks are important for achieving open space to the rear of the lot for deep soil zones, water percolation areas as well as private areas for recreation and relaxation.
Rear setbacks allow separation distances between neighbouring dwelling to ensure visual and acoustic privacy for dwellings.

Objectives
- To provide an area for private outdoor recreation and relaxation.
- To allow space for vegetation and mature trees.
- To separate dwellings to achieve privacy.

Calculation rules
Rear setbacks are measured from the rear boundary to the outside edge of the wall of the building. Setbacks are measured at 90 degrees to the lot boundary and include any articulation to the buildings elevation but do not include external living areas.

The rear setback will include the rear Deep Soil Zone and can include external living areas and any additional landscape areas.

Controls

- The minimum rear boundary setback is 8m or the deep soil zone whichever is the greater. The minimum building separation distances must be met.
- For Shop-top Housing and Shop-top Residential Flat Buildings the rear setback can be a minimum of zero.
- For Residential Flat Buildings existing mature trees within 6m of the rear boundary are to be retained.
- Garages and carparking may be located adjacent to the rear setback.

Canal Frontages

- The setback from a canal frontage is:
 - 5.5m where the boundary is on the canal side of a revetment wall, or
 - 3.4m from the revetment wall where the wall is on the boundary, except:
 - For those allotments with canal frontages and facing Gollan Drive and Jacaranda Avenue, Tweed Heads West where the setback line to the canal frontage shall be 2.5m,
 - Lots 1, 2, 3 and 4 Crystal Waters Drive, Tweed Heads West where normal building setbacks shall apply along the canal frontage.
e. No structures are to be built in the setback area other than fences to 1.2 metres high, swimming pools, retaining walls, suspended decks that do not exceed the level of the allotment at the top of the batter and boat ramps except:

(i) For those allotments with canal frontages and facing Gollan Drive and Jacaranda Avenue, Tweed Heads West where the setback line to the canal frontage shall be 2.5m

(ii) Lots 1, 2, 3 and 4 Crystal Waters Drive, Tweed Heads West where normal building setbacks shall apply along the canal frontage.

f. The underside of any suspended deck fronting a canal is to be suitably screened, except in cases where giving effect to this control would result in adverse impact to flood waters.
DESIGN CONTROL 4 - Carparking and Access

The location and design of car access and parking areas is to ensure that the site is not dominated by car related uses. Vehicle access and movement areas must not dominate the streetscape nor compromise the privacy and amenity of the site or neighbouring dwellings.

Carparking is to be convenient and is to be designed to meets the needs of residents. The design of carparking is to integrate with the overall site design to minimise visual and environmental impacts.

Objectives

- To provide on site car access, parking and manoeuvring areas.
- To minimise the physical and visual dominance of vehicles on sites.
- To minimise footpath and street reserve crossings.

Carparking Generally

Controls

a. Carparking is to be in accordance with Section A2 of the Tweed Shire Development Control Plan.
b. Carparking number concessions may be given to small sites to allow carparking to be fully under the buildings footprint.
c. Carparking can be either in an enclosed structure (a garage or basement) or an open roofed structure (a carport).
d. Carparking cannot be located within the front setback.
e. Car park entries are to be located off secondary streets and laneways where these occur.
f. The driveway width from the street to the property boundary is to be minimised.
g. Vehicular movement and parking areas are to be designed to minimum dimensions;
 - to reduce hard surfaces on the lot, and
 - to increase the area available for landscaping.
h. On grade carparking cannot occur within 12m of the primary street boundary for flat buildings and 6m for Shop-top.

Basement Carparking

Basement parking needs to be carefully designed to ensure the building is not raised unnecessarily high above ground level and that the building has direct physical connection between the dwelling and the ground. The location and size of ramps requires special consideration to ensure the streetscape is not impacted upon. Landscaping and the selection of materials can help to soften the impact of ramps and basement walls.

Car park ramps are best located within the building footprint and/or behind the buildings front elevation to avoid retaining walls within the front garden.

Controls

a. Basement carparking cannot extend more than 1m above ground where it faces a public street or public space, 1.5m above ground level can be achieved to the side and the rear of the lot where it does not face a public street or public space.
b. A ramp entering off a public street must start behind the boundary. Ramps cannot be located on public land.
c. Ramps are to be minimised in width.
d. The walls of basement carparks are best located in line with the buildings footprint. Basement carparking is not to extend outside the external line of terraces, balconies and porches.
Garages and Carports

Controls

a. The design and materials used for garages must be in keeping with the main dwelling.

b. Shop-top on-grade car parking cannot be located closer than 6m from the street boundary. On-grade car parking can be located on a laneway boundary.

c. For Residential Flat buildings garage doors and entries to basement carparks along the street cannot be more than 7m wide or 50% of the lot width whichever is the lesser.

d. Laneways may have up to 75% of their frontage as garage doors.

e. For Shop-top housing and Shop-top Residential Flat buildings garage doors along the street are to be located either in line with the building street elevation or at least 1m behind the buildings street elevation.

f. Where a development has a carport refer to the Carport Controls in Part B – Dual Occupancy Houses, Granny Flats, Town Houses and Row Houses.

g. A pedestrian access way from the laneway is encouraged.
Carports can be stacked and are to be located adjacent to the side boundary.
DESIGN CONTROL 5 – Building Footprint and Attics, Orientation and Separation

Building Footprint and Attics
A building footprint is a two dimensional area that sets the extent of a building in relation to the site boundaries. It defines the width and depth of the overall buildable area within which a future building can be located.

The building footprint sets the appropriate location and alignment of future development in relation to the street layout, block and lot size in a particular location. Building footprint is used to control residential amenity in terms of light, ventilation, privacy, outlook, security and consolidated landscaped areas across the lot. It also provides a setting for the building on the street consistent with the streetscape.

Attics can provide additional floor space whilst helping to reduce the overall height of buildings. An attic is a space that is contained within a pitched roof of a building. Attic rooms require either skylights or dormer windows for light and air.

Objectives
• To ensure that the bulk of the development is in scale with the existing or desired future context.
• To provide adequate amenity for building occupants in terms of sun access and natural ventilation.

Calculation rules
Building footprint depth refers to the dimension measured from the buildings front or street elevation to the back elevation (rear of the site). Building depth includes the internal plan depth of the dwelling; it does not include external living areas.

Building footprint width is measured from side building elevation to side elevation. Building width is set by the width of the site minus the required side setback (including driveways).

Building footprint does not include external living areas.
Controls

a. For buildings that only have daylight access to two and opposite sides of the building the back wall of a room cannot be greater than 10 metres from a window.

b. Attic spaces cannot be more than 50% of the building footprint.

c. The majority of the volume of an attic is to be contained within the roof space.

Building Orientation

Building orientation is a term used to describe the primary aspect of the building or the walls containing the windows of the living areas of a dwelling and external living areas. The buildings orientation is defined in relation to the site boundaries.

Building orientation is important in ensuring privacy and outlook for new dwellings and to protect the amenity of neighbouring dwellings. In existing residential areas the established orientation of dwellings is to the front and the rear of lots. It is important that new development respect and replicate this pattern so as to fit within the established context.

Orientation is a key aspect in ensuring that new development respects and responds to the streetscape. By locating the primary windows of living areas facing the street boundary and/or the rear boundary this allows the side boundaries to have mainly the windows to ancillary rooms. This allows the building to be located closer to the side boundaries where separation distances for ancillary rooms are not as stringent. This gives a great length or frontage to the front and rear elevations where privacy and outlook are more easily achieved given the separation distances created by the front garden and street to the front of the lot and rear gardens to the rear of lots.

Where it is not desirable to have living spaces facing the street boundary, bedrooms can be located to the front instead. Where this occurs the main entry must still be facing the street and must remain clearly visible.

Objectives

- To easily achieving setback distances for privacy and outlook.
- To provide a level of surveillance over the street.
- To provide a frontage and clear entry facing the street.
- To avoid overlooking neighbouring dwellings.
- To prevent development from relaying on neighbouring lots for privacy, sunlight access or outlook.

Controls

a. All dwellings with a street frontage(s) are to be oriented to and address the street(s).

b. Ensure that the pedestrian entry to the development is clearly visible and accessible from the street.

c. Where possible orientate bathroom, laundry and other ancillary room windows to the side boundaries.

d. Where possible orient the primary windows of living rooms to the front or the rear of lots.

e. Orient living areas to employ passive solar design principles.

Calculation rules

Address refers to the dwelling presenting an attractive elevation to the public domain; this generally includes windows of habitable rooms and the front door to the dwelling.

Primary windows and doors are those that give the rooms its outlook, light and air.

Secondary windows and doors can also provide outlook, light and air to the room but in the case that greater privacy is required for either dwelling or neighbouring dwellings these windows/doors can be of opaque material, fixed, shaded or small in size and are not the primary source of outlook, light and air.
In established residential areas many buildings are oriented to the front and rear of lots so that privacy and outlook are coordinated across the block, the street and between neighbouring buildings.

Living rooms and external living areas can be oriented to the front and rear of the site.

These residential flat buildings all have their primary orientation to the street with external living areas, low height fences, entries, windows and doors.
Building Separation

Achieving adequate separation between buildings and shared driveways is an important consideration when increasing densities in existing and established residential areas. It ensures that both existing and new residents can enjoy privacy both to internal and external spaces.

Ensuring the orientation of primary windows to habitable rooms is to the front and the rear of sites is fundamental to achieving an efficient site layout and achieving or exceeding minimum separation distances. Separation distances are to enhance the livability of the dwelling by providing useable outdoor space generally associated to living space with the dwelling.

Objectives

- To maintain privacy between dwellings.

Controls

a. Three storey buildings require a 10m minimum separation between the wall containing primary windows/doors of living rooms (on any level of the building) to the wall of an adjacent building containing primary window/doors of living rooms.

b. Two storey buildings require an 8m minimum separation between the wall containing primary windows/doors of living rooms (on any level of the building) to the wall of an adjacent building containing primary window/doors of living rooms.

c. 6m minimum separation distance between primary windows/doors (on any level of the building) of living rooms to windows other than the primary windows of living rooms.

d. 4m min separation between walls containing primary windows/doors of living rooms (on any level of the building) the side boundaries.

e. 4m minimum separation between the primary windows of living rooms (on any level of the building) and walls containing no windows.

f. 4m minimum separation between walls containing primary windows/doors of living rooms (on any level of the building) to shared driveways.

g. 4m minimum separations between walls containing primary windows/doors of living (on any level of the building) to carports and garages.

h. 3m minimum separation between walls containing primary windows/doors sleeping rooms (on the ground level only) to shared driveways, carports and garages.

i. 2m min separation distance between the windows/doors of non-habitable rooms (on any level of the building). This distance can be measured diagonally.

Calculation rules

Separation distances are measured between buildings that can either be on the same lot or on neighbouring lots.

Separation distance is measured at 90 degrees to the wall.

Primary windows and doors are those that give the rooms its outlook, light and air.

Secondary windows and doors can also provide outlook, light and air to the room but in the case that greater privacy is required for either dwelling or neighbouring dwellings these windows/doors can be of opaque material, fixed, shaded or small in size and are not the primary source of outlook, light and air.
DESIGN CONTROL 6 – Height

Building Height
Height is an important control to ensure that future development responds to the desired scale and character of the street and local area and to allow reasonable daylight access to existing developments.

The height controls are intended to work with existing buildings in the street. Height controls on individual sites are to be further refined by decisions about daylight access, roofs, residential amenity, setting and topography of particular locations and streets.

Objectives
- To design new development appropriate to the existing building scale in the street and the local area.
- To ensure new development maintains an appropriate residential character.

Controls
- a. 13.6m is the maximum overall building height for Shop-top Housing and Shop-top Residential Flat Buildings.
- b. 11m is the maximum wall plate height for Shop-top Housing and Shop-top Residential Flat Buildings.
- c. 12.2m is the maximum overall height building height for Residential Flat Buildings.
- d. 9.6m is the maximum wall plate height for Residential Flat Buildings.
- e. Detached garages are to have an eave height of no more than 2.7m and a maximum overall building height of 3.5m for a flat roof and 4.5m for a pitched roof.
- f. Carports maximum height 3.5m for a flat roof and 4.5m for a pitched roof.

Calculation rules
- Height is measured in an overall building height, wall plate height.
- Overall building height is the vertical distance between finished ground level at any point to the highest point of the building, including plant and lift overruns, but excluding communications devices, antennae, satellite dishes, masts, flagpoles, chimneys flues and the like. The measurement of overall building height includes all roofs and all roof elements. The height as specified is the maximum allowable.
- Wall plate height is the vertical distance between finished ground level to the highest point where the wall joins the roof.
- The definition of storey is found in the Tweed LEP.
- Ground level (existing): means the existing level of a site at any point.
- Ground level (finished): means, for any point on a site, the ground surface after completion of any earthworks (excluding any excavation for a basement, footings or the like) for which consent has been granted or which is exempt development.
Ceiling Height

Higher ceilings can create better proportioned internal spaces. Generous ceiling heights are particularly important in buildings with small, deep rooms or in rooms that have little sun penetration such as those facing south.

Objectives
- To increase the sense of space in dwellings.
- To contribute to well proportioned rooms.
- To promote the penetration of daylight into dwellings.

Controls
a. Provide minimum ceiling heights of 2.7m min. finished floor level to finished ceiling level for habitable rooms. For habitable rooms with a raking ceiling at least 30% of the ceiling is to be at 2.7m high.
Double height ceiling spaces can significantly increase light penetration into narrow or one-sided apartments as well as add to the quality of the internal space.
DESIGN CONTROL 7 – Building Amenity

Building amenity is the way in which the building provides a high quality of life for residents. This is concerned with the ability of spaces to adequately provide for their intended function and level of activity. The key aspects of building amenity include: sunlight access, visual privacy, acoustic privacy, view sharing, and natural ventilation.

Sunlight Access

The use of passive solar design in dwellings is encouraged. Tweed has a temperate sub-tropical climate and well designed houses in Tweed should only require a limited amount of heating and cooling. The heat load resulting from direct solar penetration into buildings during the hotter months can be a major problem, and so it is important that dwellings are designed to optimise the benefits of sunlight, whilst minimising its negative effects.

The orientation of the allotment, the immediate subdivision pattern and the local topography, have a significant impact on the ability to provide solar access. Sites on the southern side of a hill, for example, may not receive the same level of sunlight access as other sites. On allotments where the side boundary has a northerly aspect, consideration should be given to increasing the side setback to improve sunlight access and to prevent overshadowing by future development on neighbouring allotments.

It is also important when designing new buildings to consider the impact of the new development on the solar access of the neighbour. In some instances, overshadowing may be unavoidable; however unreasonable overshadowing of neighbours as a result of poor design is not acceptable.

Ideally, solar access should be maximised in winter and minimised in summer. A northerly aspect is most desirable as it provides the most solar access in winter and is relatively easy to shade in summer. A westerly aspect is least desirable, particularly in summer. Protection for a westerly aspect can be achieved by using such elements as vertical sun shading devices, blinds and deciduous trees.

Daylight consists of both diffuse light and direct light. Good levels of daylight in a dwelling improve amenity and reduce the need for artificial lighting. Good levels of daylight can be achieved through the careful consideration of window size, location and proportion.

Objectives

• To maximise sunlight and daylight access.
• To ensure that sunlight access of neighbouring dwellings and neighbouring private open space is minimised.
• To encourage the use of passive solar design.

Controls

a. Living spaces are to be located predominantly to the north where the orientation of the allotment makes this possible.

b. Dwellings on allotments which have a side boundary with a northerly aspect are to be designed to maximise sunlight access to internal living areas by increasing the setback of these areas. In these cases a minimum side setback of 4 metres is required.

c. Private open space of the subject dwelling is to receive at least two hours sunlight between 9am and 3pm on June 21.

d. Windows to north-facing habitable rooms of the subject dwelling are to receive at least 3 hours of sunlight between 9am and 3pm on 21 June over a portion of their surface.

e. For neighbouring properties ensure:
 - sunlight to at least 50% of the principal area of private open space of adjacent properties is not reduced to less than 2 hours between 9am and 3pm on June 21, and
 - windows to living areas must receive at least 3 hours of sunlight between 9am and 3pm on 21 June.

f. Where existing overshadowing by buildings is greater than this, sunlight is not to be further reduced by more than 20%.

Tweed Shire Council
Visual Privacy

Visual privacy allows residents to carry out private activities within all rooms and private open spaces without compromising the functioning of internal and external spaces. Visual privacy is determined by the nature of adjacent developments, site configuration, topography, the scale of the development, and the layout of individual dwellings.

Living rooms should be located to the front and rear elevations where privacy and outlook are more easily achieved. Locating the majority of windows facing towards the street and the rear boundaries means that the windows of ancillary rooms will face the side boundaries. This allows the building to be located closer to the side boundaries as there is fewer privacy impacts.

It is not necessary to provide the same degree of privacy protection to all parts of a neighboring site. Higher levels of privacy are to be provided to both internal living areas and to the external living area. Overlooking from bedroom windows is less of a concern than overlooking from the windows of other habitable rooms. Terraces and balconies from living rooms located above ground level can have a significant impact on the amenity of neighbours with regard to loss of visual privacy and increase in noise levels.

Objectives

• To provide visual privacy for internal and externally spaces.
• To facilitate outlook and views from principal rooms in dwellings and private open spaces without compromising visual privacy.
• To provide a level of surveillance over the street.
• To minimise overlooking of neighbouring dwellings.

Controls

a. Terraces and balconies off living areas are generally not to be located above ground floor if they overlook neighbours.
b. Living room and kitchen windows, terraces and balconies are avoid a direct view into neighbouring dwellings or neighbouring private open space.

c. Side windows are to be offset by distances sufficient to avoid direct visual connection.

d. Windows of the subject dwelling and those of the neighbouring dwelling.

Acoustic Privacy

Acoustic privacy is a measure of sound insulation between individual dwellings, and between external and internal spaces. Designing for acoustic privacy relates to the location and separation of buildings and the location of living areas and above ground external areas such as terraces.

The proximity of the building to major external noise sources such as busy roads is also a major consideration. Setbacks, separation between dwellings, and the appropriate location of external living areas, provide the primary method of ensuring acoustic privacy.
Objectives
• To provide a high level of acoustic privacy.
• To minimise the impacts of noise generating uses such as traffic, air conditioners, pumps, and other mechanical equipment.

Controls
a. The noise of an air conditioner, pump, or other mechanical equipment must not exceed the background noise level by more than 5dB(A) when measured in or on any premises in the vicinity of the item. This may require the item to have a sound proofed enclosure.
b. Dwellings located on designated or classified roads are to have double glazed windows where these windows face the road and provide light to living rooms or bedrooms. This is the case whether or not the dwelling has a solid masonry wall to the arterial road.
c. Dwellings located on arterial roads are to have an acoustic seal on the front door to reduce noise transmission.

View Sharing
View sharing is where new dwellings are designed so as to retain the private views enjoyed from existing dwellings on neighbouring sites.

Objectives
• To ensure new dwellings endeavour to respect important views from living areas and rooms within existing dwellings.

Controls
a. Building siting is, as far as it is practical, to be designed to minimise the impact on view sharing between properties.

Natural Ventilation
Natural ventilation is the circulation of sufficient volumes of fresh air through dwellings to create a comfortable indoor environment. Designing for natural ventilation exercises sustainable practice by responding to the local climate and by reducing or eliminating the need for mechanical ventilation.

Objectives
• To ensure that residential and other buildings are designed to provide all habitable rooms with direct access to fresh air and to assist in promoting thermal comfort for occupants.
• To encourage natural ventilation in non-habitable rooms.
• To reduce energy consumption by minimising the use of mechanical ventilation.

Controls
a. All dwellings are to have operable windows to habitable rooms.
b. Non habitable rooms including kitchen, bathroom & laundry are encouraged to have operable windows.
c. The plan layout, including the placement of openings, is to be designed to optimise access to prevailing breezes and to provide for cross-ventilation.
DESIGN CONTROL 8 – Internal Building Configuration

Use
It is expected that the building types covered in this Part may at some time over the life of the dwelling be used to provide tourist or residential accommodation. In order to ensure quality medium density accommodation throughout the Tweed area, the design requirements are the same for short and long-term accommodation.

The types of tourist accommodation that can be regulated to ensure only short-term use occur includes hotels, motels and caravan parks. These building types are not covered by this Part.

For all the building types covered in this Part the site, building and dwelling design requirements are identical and interchangeable between residential and tourist accommodation uses.

Some of the tourist and visitor accommodation uses that can occur within any of the building types covered in this Part are temporary or short-term accommodation on a commercial basis including serviced apartments, bed and breakfast accommodation and backpackers’ accommodation.

Objectives
• To provide a high standard of accommodation for both short and long term residents.

Controls
a. Permanent and temporary accommodation uses are interchangeable throughout all building types covered in this Part.

Dwelling Layout and Design
The internal layout of a dwelling establishes the spatial arrangement of rooms, the circulation between rooms, and the degrees of privacy for each room. In addition, the layout directly impacts the quality of residential amenity, such as access to daylight and natural ventilation, and the assurance of acoustic and visual privacy. The dwelling layout also includes private open space. This is particularly important for apartments in flat buildings where densities are higher than for terraces and detached dwellings.

Objectives
• To ensure that dwelling layouts are efficient and provide high standards of residential amenity.
• To maximise the environmental performance of dwellings.

Controls
a. Design the internal layout of dwellings to:
 - accommodating a variety of furniture arrangements,
 - providing for a range of activities and privacy levels between different spaces within the dwelling,
 - utilising flexible room sizes and proportions or open plans,
 - ensuring circulation by stairs, corridors and through rooms is planned as efficiently as possible thereby increasing the amount of floor space in rooms.

a. The back of the kitchen should be no more than 10m from a window.
The design of the front setback and front of the building has created a distinctive entry area and landscaping, and creatively resolved service requirements to give the development a quality address to the street.

Storage

Providing storage space for items ancillary to people’s living needs is particularly important in residential developments where the size of dwellings and their configuration are constrained. Storage is conventionally calculated in proportional to the size of the dwelling.

Objectives

a. To provide adequate storage for everyday household items within easy access of the dwelling.
b. To provide storage for sporting, leisure, fitness and hobby equipment.

Controls

a. In addition to kitchen cupboards and bedroom wardrobes, provide accessible storage facilities at the following rates:

- studio 3m³
- one-bedroom 3m³
- two-bedroom 4m³
- three plus bedroom 5m³

b. The above minimum storage areas shall be excluded from dwelling size calculations.
c. Locate storage conveniently for dwellings.
Internal Circulation

Lobbies, stairs, lifts and corridors make up the common circulation spaces within a building. Important design considerations include safety, amenity and durability. In addition, the number, location, and proportion of these elements have a direct relationship with the building’s form, layout and articulation.

Designing buildings with multiple cores to:
- ensure the number of units off a circulation core on a single level is limited,
- assist in providing better apartment layouts,
- increase the number of entries along a street,
- increase the number of vertical circulation points,
- give more articulation to the facade.

Objectives

- To create safe and pleasant spaces for the circulation of people.
- To encourage interaction and recognition between residents to contribute to a sense of community and improve perceptions of safety.
- To facilitate quality apartment layouts, such as dual aspect apartments.
- To contribute positively to the form and articulation of the building façade and its relationship to the urban environment.

Controls

a. Limit the number of units accessible from a single core/corridor to eight.
b. Increase amenity and safety in circulation spaces by;
c. providing generous corridor widths (preferred min. 2.5m) and ceiling heights (preferred min. 2.7m), particularly in lobbies, outside lifts and apartment entry doors,
d. providing appropriate levels of lighting, including the use of natural daylight,
e. minimising corridor lengths to give short clear sight lines.
DESIGN CONTROL 9 - External building elements

External building design elements include;
- fences and walls,
- roofs, dormer windows and skylights
- elevations visible from the public domain,
- awnings, canopies, pergolas, storm blinds, sails and signage,
- minor elements.

These external building elements are highly visible from the street and as such contribute to the character of the streetscape and the local area.

The design of external building elements is to make a positive contribution to the attractiveness of the streetscape and the local area and contribute to a consistent built character along the street.

Fences and Walls; Front, Side and Rear

Fences and walls include all built vertical landscaping elements designed to define boundaries between one space and the next or to accommodate a change in level.

The design of fences and walls has an impact on the real and perceived safety and security of residents as well as on the amenity of the public domain and the streetscape character. The visual impact, scale and design of fences all need to be carefully considered.

Front boundary fencing should also be designed in a manner that facilitates access to the water metre servicing the property at all times, except where an alternative meter reading facility is accommodated on site, that is, an electronic reader or bar scanning system.

Objectives
- To define the boundaries between public and private land.
- To define the boundaries between neighbouring properties.
- To contribute to the streetscape appearance.
- To enhance the usability of private open space.
- To offer acoustic and visual privacy on busy roads.

Controls
a. Front and return fences are to reflect the design of the dwelling.
b. Front and return fences and walls are to be constructed of materials compatible with the house and with other fences and walls within the streetscape.
c. Return fences are to be the same height and design as front fences.
d. Front and return fences can be up to maximum height of 1.5m high with a maximum solid fence height of 600mm, above the solid wall the fence is to have a min. openness ratio of 60%.
e. Front and return fences may be solid up to 1.5m if located on an arterial road.
f. No Colorbond or timber paling for front or return fences, except were integrated into a design theme that is consistent with the character of the dwelling and streetscape and incorporates appropriate articulation to allow for landscaping.
g. Fences and walls are not to impede the natural flow of stormwater runoff.
h. If located in a bushfire prone area fences and walls are to comply with AS3959 and Planning for Bush Fire Protection 2006, as amended from time to time.
i. A solid front wall may be higher than 0.9m where the topography means a retaining wall is necessary. The height of the retaining wall is to be minimised and is to be compatible with the positive characteristics of the existing streetscape.
j. Fencing is not to obstruct water meter reading.

Side and Rear Fences

Controls

a. Side fences are measured from behind the building line to the rear boundary. Maximum fence height of 2.0 metres.

b. No chain wire fences are to exceed 1.2m in height.

c. May include timber paling, metal or Colorbond material.

d. For tennis courts or other similar areas, chain wire fences shall be black or dark green plastic coated mesh. Solid fences enclosing these facilities shall not be permitted over 3.6m and shall be a min. off the side boundaries of 600m and off any front boundary by 1m.

e. Fences and walls are not to impede the natural flow of stormwater runoff.

f. Controls for front fences and walls also apply to secondary street frontages on corner lots measured for the length of the dwelling.

Fences and walls for Greenbank Island

f. Approval is to be obtained from Council prior to the erection of any fencing on Greenbank Island.

g. Fencing behind the six (6) metre building line shall not exceed 2000mm in height.

h. The fencing is to be constructed of brick, stone, masonry block or such other material as is approved by Council.

Indicative front fence design with a low wall, open fencing above and landscaping.

Low fences and informal coastal landscaping in this example contribute to a distinctive residential streetscape.
This fence returns down the side boundary, combines landscaping, open fencing and low walls to create a fence that enhances the pedestrian scale and residential qualities of the street.

Roofs, Dormers and Skylights

The roof is an important architectural element for the overall composition and expression of a building. The shape and form of a roof and its associated elements responds to the environment and the context. Quality roof design responds to various viewpoints within the local context, such as the roofscape observed from higher locations and the silhouette viewed from the street. In some areas the roof forms part of a distant view and sits within a larger skyline vista.

Roofs on Residential Flat Buildings may have an unenclosed useable external area.

Objectives

- To contribute to the design and performance of buildings.
- To integrate the design of the roof into the overall elevation and building composition.
- To contribute to a consistent and attractive streetscape.
- To provide shading and weather protection.

Controls

a. Relate roof design to the desired built form by:
 - articulating the roof,
 - providing eaves,
 - using a compatible roof form, slope, material and colour to adjacent buildings; and
 - ensuring the roof height is in proportion to the wall height of the building.

b. The main roof is not to be a trafficable terrace.

c. Skylights are:
 - not to reduce the structural integrity of the building or involve structural alterations,
 - to be adequately weatherproofed,
 - to be installed to the manufacturer’s instructions.
Elevations Visible from the Public Domain

The architectural quality of buildings frontages and partially the side elevations contribute to the character and design of the streetscape. High architectural quality requires the appropriate composition of building elements, textures, materials and colours and reflects the use and internal layout of buildings.

The composition and detailing of the building’s elevations has an impact on its apparent scale as well as its appearance. The pattern or rhythm established by the proportions of the elevation, the modulation of the external walls, the design of elevation elements, their materials and their detailing are all important considerations.

Objectives
- To define and enhance the public domain and street character.
- To ensure that ancillary building elements are integrated into the overall building form and elevation design.

Controls
a. Design important elements such as front doors and building entry areas to have prominence in the building elevation and to be clearly identifiable from the street.
b. Use proportions, materials, windows and doors types that are residential in type and scale.
c. Design elevations to reflect the orientation of the site using elements such as sun shading, light shelves and bay windows as environmental controls.
d. Coordinate and integrate building services, such as drainage pipes, with overall elevation and balcony design.
e. Coordinate grills/screens, ventilation louvres, carpark entry doors with the elevation.
f. Integrate the design of garage entries with the building elevation design.

Operable and moveable louvers allow the amount of visual privacy, outlook and sun penetration to be controlled by the residents to suit different personal requirements and times of the day or night.

Corner Building Elevations

In addition to the controls for building elevations ensure that corner buildings, which are by their location often highly visible, are well designed and respond to the different characteristics of the streets they address.
Controls

a. Corner building (buildings with two street frontages) elevations are to reflect the architecture, hierarchy and characteristics of both streets.

b. Building elevations on corner sites are to be oriented to both streets by having windows and doors addressing both streets.

c. Landscaping, fence and wall treatments on the secondary street frontage are to be similar to the primary street frontage for the length of the building.

This mixed use building provides addresses the corner with an outdoor seating area and a shop.

Awnings, Canopies, Pergolas, Storm Blinds, Sails and Signage

In commercial main streets awnings increase the usability and amenity of public footpaths by protecting pedestrians from sun and rain. They encourage pedestrian activity along streets and, in conjunction with retail frontages; they support and enhance the vitality of commercial areas. Awnings, like building entries, provide a public presence and interface within the public domain thereby contributing to the identity of a development.

Signage is an important consideration in the design of buildings located in mixed-use areas such as commercial centres. Where signage is required for business identification its design should be compatible with the desired streetscape character, with the scale, and proportions of the development and without obscuring or dominating important views.

In residential buildings awnings, canopies, pergolas and blinds can significantly improve the livability of dwellings. Operable blinds such as louvers can greatly improve the privacy and thermal efficiently of both external and internal spaces.

Pergolas are generally located on the ground level and offer opportunities for providing privacy from upper level dwellings that may look down onto ground level dwellings.

Objectives

- To provide shelter for public streets in mixed-use areas.
- To provide shelter from sun, wind and rain for private external spaces.
- To ensure signage is in keeping with desired streetscape character and with the development in scale, detail and overall design.
- To encourage pedestrian activity on streets by providing awnings to retail/commercial strips and in other highly trafficked areas.

Controls

Awning on commercial main streets

a. For the commercial component of Shop-top Housing and Shop-top Residential Flat Buildings provide awnings along the commercial main street.

b. Awnings are to provide adequate protection from sun and rain.

c. Awnings are to follow the general alignment and pattern of existing awnings in the street and complement the height, depth and form of the desired character or existing pattern of awnings.

d. Awnings are to enhance pedestrian safety by providing under-awning lighting.

e. Awnings, canopies and storm blinds are to be wholly within the lot boundaries at least 900mm from the site boundaries.

f. Must observe and maintain existing building line setbacks.

g. If erected in a bushfire prone area, they are to comply with the requirements of AS3959 and Planning for Bushfire Protection 2006.

h. Pergolas must not be located closer to a boundary than 900mm.

i. Ensure that signage provides clear and legible way-finding for residents and visitors.

Awnings significantly improve the liveability and pedestrian scale of commercial streets and protect pedestrian from harsh environmental conditions rain, sun and wind.
Minor Elements

Minor structures include those building elements that are associated with the use of the dwelling for residential purposes. Minor structures include; air conditioning units, aerials, antennae, microwave antennae and satellite dishes, barbecue areas, aviaries, clothes hoists/lines, flagpoles, letter boxes and outdoor security lighting.

Controls

a. Air Conditioning Units
 - Noise levels from air conditioning units are not to exceed 5dB(A) above ambient background noise levels measured at the property boundary.
 - Air conditioning unit installation must not reduce the structural integrity of the building.
 - Openings created by the installation of air conditioning units must be adequately weatherproofed.
 - Air conditioning units are not to be visible from streets.

b. Aerials, antennae, microwave antennae are to be:
 - for domestic use only,
 - a maximum of one per single dwelling house,

c. Ground mounted satellite dishes are to be:
 - a maximum height of 2.4 metres,
 - limit of one per dwelling house on lots less than 5,000 square metres,
 - located so as not to be visible from a public place,
 - a minimum of 900mm from a property boundary.

d. Roof Mounted satellite dishes are to be:
 - suitably coloured to blend in with the building,
 - structurally stable,
 - one per dwelling house on lots less than 5,000 square metres,
 - No higher than the ridge line

e. Barbeque areas are to be:
 - used for domestic purposes only,
 - no closer than 900mm to a property boundary,
 - located in the rear yard or no closer to the front of the property than 900mm behind the buildings front elevation,
 - located with consideration to the impact upon adjoining properties.

f. Aviaries are to be:
 - used for domestic purposes only,
 - located no closer than 10 metres from a dwelling house on any adjoining property,
 - located in the rear yard and not closer than 900mm to an adjoining property boundary measured to any part of the building,
 - structurally sound.

f. Clothes hoists/lines are to be:
 - located in the rear yard or no closer to the street than the front elevation of the building,
 - if located on the side of the dwelling they are to be screened from view from all dwellings and the street.

g. Flagpoles are to be:
 - structurally sound,
 - wholly within the property boundary.

h. Letterboxes:
 - are to be a maximum height of 1.2m above the ground,
- are to have street numbering corresponding with that allocated to the dwelling,
- are to be structurally sound,
- are to be designed as part of the building and its landscaping using similar materials and finishes,
- in multi-dwelling developments letterboxes must be located on common property; be contained in one structure, contain sufficient boxes, on for each dwelling, including one for the body corporate.

i. Outdoor security lighting is to be located and designed:
- so as to avoid light spill into the living and sleeping areas of the dwelling,
- to confine light spill to the source property.
DESIGN CONTROL 10 – Building Performance

Energy Efficiency

The ability of the development to optimise thermal performance, thermal comfort and day lighting will contribute to the energy efficiency of buildings, providing increased amenity to occupants and reduce greenhouse emissions and, with them, the cost of supplying energy.

Objectives

- To reduce the necessity for mechanical heating and cooling.
- To reduce reliance on fossil fuels.
- To minimise greenhouse gas emissions.
- To support and promote renewable energy initiatives.

Controls

a. Developments are to obtain BASIX certification where required.

Design Guidelines

Refer to BASIX to supplement these guidelines

Incorporate passive solar design techniques to optimise heat storage in winter and heat transfer in summer by:
- maximising thermal mass in floor and walls in northern rooms of dwellings,
- insulating roof/ceiling external walls and the floor.

Improve the control of mechanical space heating and cooling by:
- designing heating/cooling systems to target only those spaces which require heating and cooling, not the whole dwelling,
- allowing for adjustable awnings and blinds to be attached to the outside of windows to keep the heat out in summer,
- providing reversible ceiling fans for improving air movement in summer and for distributing heated air in winter.

Consider planning for future installation of photovoltaic panels by:
- designing the roof so that photovoltaic panels can be mounted parallel to the roof plane,
- locating trees where they will not shade existing or planned photovoltaic installations.

Improve the efficiency of hot water systems by:
- insulating hot water system,
- installing water-saving devices.

Reduce reliance on artificial lighting by:
- providing a mix of lighting fixtures, including dimmable lighting, to provide for a range of activities in different rooms,
- designing to allow for different possibilities for lighting,
- using separate switches for special purpose lighting,
- using high efficiency lighting,
- using motion detectors for common areas, lighting doorways and entrances, outdoor security lighting and car parks.

Maximise the efficiency of household appliances by:
- selecting an energy source with a minimum greenhouse emissions,
- installing high efficiency refrigerators/freezers, clothes washers and dishwashers,
- providing areas for clothes to be dried through natural ventilation.

Waste Management

The minimisation and management of waste from development can contribute to the visual and physical amenity of the building as well as limiting potentially harmful impacts on the environment. Minimising waste is relevant to all stages of the building’s life cycle, from construction to demolition. It also includes the way in which waste is stored and collected.
Objectives

- To plan for the types, amount and disposal of waste to be generated during demolition, excavation and construction of the development.
- To encourage waste minimisation, including source separation, reuse and recycling.
- To ensure efficient storage and collection of waste and quality design of facilities.

Controls

a. Any application for development that involves the demolition of existing structures is to provide a Demolition work plan in accordance with the provisions of AS2601 and Councils work plan requirements.

b. Excavation that will result in waste material having to be transported off-site must be minimised through the use of site response building design. Where practical excavated material should be reused on-site.

Design Guidelines

- Incorporate existing built elements into new work, where possible.
- Recycle and reuse demolished materials, where possible.
- Specify building materials that can be reused and recycled at the end of their life.
- Integrate waste management during the design stage by: reducing waste by utilising the standard product/component sizes of the materials to be used, incorporating durability, adaptability and ease of future services upgrades.
- Prepare a waste management plan for green and putrescent waste, garbage, glass, containers and paper.
- Locate storage areas for rubbish bins away from the front of the building so as to minimise negative impacts on the streetscape.
- Provide every dwelling with a waste cupboard or temporary storage area of sufficient size to hold a single day’s waste and to enable source separation.
- Incorporate on-site composting

Water Conservation

Dwelling design can contribute to environmental sustainability by integrating measures for improved water efficiency. Water can be conserved in two ways; by reducing water demand from the mains and by re-using water which would otherwise be lost as run off or waste water.

Objectives

- To reduce main consumption of potable water.
- To reduce the quantity of urban stormwater run off.

Controls

a. All developments are to obtain BASIX certification where required and comply with the relevant requirements of the Building Code of Australia.

Design Guidelines

- Use AAA rated appliances to minimise water use.
- Encourage the use of rainwater tanks.
- Collect, store and use rainwater on site. This may be used for car washing, watering the garden, toilet flushing, laundry and clothes washing. Once treated, rainwater can also be used for potable supply.
- Incorporate local indigenous native vegetation in landscape design.
- Consider grey water recycling.
- Some building sites may be suitable for reuse of treated effluent.
Maintenance

Detailed design and material selection support long-term maintenance of developments. This is particularly important in relation to corrosion issues in coastal areas. On-going maintenance ensures the longevity of quality architectural and landscape design, sustains and increases the value of property and minimises the life-cycle cost of a development to owners.

Objectives

- To ensure long life and ease of maintenance for the development.

<table>
<thead>
<tr>
<th>Design Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design windows to enable cleaning from inside the building, where possible.</td>
</tr>
<tr>
<td>Select manually operated systems, such as blinds, sunshades, pergolas and curtains in preference to mechanical systems.</td>
</tr>
<tr>
<td>Incorporate and integrate building maintenance systems into the design of the building form, roof and facade.</td>
</tr>
<tr>
<td>Select durable materials, which are easily cleaned.</td>
</tr>
<tr>
<td>Select appropriate landscape elements and vegetation and provide appropriate irrigation systems.</td>
</tr>
<tr>
<td>Some building sites may be suitable for reuse of treated effluent.</td>
</tr>
</tbody>
</table>
Design Control 11 – Floor Space Ratio (FSR)

Floor space ratio (FSR) control provides a guide as to the allowable densities for an area. FSR is not to be the sole determinant of future built form; it needs to be linked with all other building envelope controls to support the desired building-massing outcome. FSR is an absolute maximum, which may not be wholly achievable on all sites due to other design considerations.

Objectives
- To match building scale with the capacity of the site and the local area.
- To define the allowable development density for sites.

Controls
- Shop-top housing and Shop-top Residential Flat Buildings 2:1 maximum FSR.
- Residential Flat Buildings is 1.2:1 maximum FSR.

Calculation rules
The maximum FSR will not always be achievable on all sites. It is the generic way of defining the density of the site and is to be measured once all the other Design Controls have been achieved.

Floor space ratio is the ratio of the gross floor area of all buildings on a site to the site area.

Gross floor area: means the sum of the floor area of each storey of a building measured from the internal face of external walls, or from the internal face of walls separating the building from any other building, measured at a height of 1.4 metres above the floor, and includes:
- the area of a mezzanine within the storey,
- habitable rooms in a basement,
- any shop, auditorium, cinema, and the like, in a basement or attic,
but excludes:
- basements projecting more than 1m above finished ground level,
- storage areas,
- vehicular access, garbage and services,
- areas used exclusively for mechanical services or ducting,
- car parking to meet any requirements of the consent authority (including access to that car parking),
- external living areas; terraces and balconies with outer walls less than 1.4 metres high,